• 제목/요약/키워드: Response Time Delay

검색결과 553건 처리시간 0.038초

Improvement of Group Delay and Reduction of Computational Complexity in Linear Phase IIR Filters

  • Varasumanta, Saranuwaj;Sookcharoenphol, Dolchai;Sriteraviroj, Uthai;Janjitrapongvej, Kanok;Kanna, Channarong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.955-959
    • /
    • 2003
  • A technique for realizing linear phase IIR filters has been proposed by Powell-Chau which gives a real-time implementation of H(z-1).H(z), where H(z) is a causal nonlinear phase IIR filter. Powell-Chau system is linear but not timeinvariant system. Therefore, that system has group delay response that exhibits a minor sinusoidal variation superimposed on a constant value. In the signal processing, this oscillation seriously degrade the signal quality. Unfortunately, that system has a large sample delay of 4L and also more computational complexity. Proposed system is present a reduced computational complexity technique by moved the numerator polynomial of H(1/z) out to cascade with causal filter H(z) and remain only all-pole of H(1/z), then applied truncated infinite impulse response to finite with truncated IIR filtel $H_L$(z) and L sample delay to subtract the output sequence from the top and bottom filter. Proposed system is linear time invariance and group delay response and total harmonic distortion are also improved.

  • PDF

Real-time hybrid testing using model-based delay compensation

  • Carrion, Juan E.;Spencer, B.F. Jr.
    • Smart Structures and Systems
    • /
    • 제4권6호
    • /
    • pp.809-828
    • /
    • 2008
  • Real-time hybrid testing is an attractive method to evaluate the response of structures under earthquake loads. The method is a variation of the pseudodynamic testing technique in which the experiment is executed in real time, thus allowing investigation of structural systems with time-dependent components. Real-time hybrid testing is challenging because it requires performance of all calculations, application of displacements, and acquisition of measured forces, within a very small increment of time. Furthermore, unless appropriate compensation for time delays and actuator time lag is implemented, stability problems are likely to occur during the experiment. This paper presents an approach for real-time hybrid testing in which time delay/lag compensation is implemented using model-based response prediction. The efficacy of the proposed strategy is verified by conducting substructure real-time hybrid testing of a steel frame under earthquake loads. For the initial set of experiments, a specimen with linear-elastic behavior is used. Experimental results agree well with the analytical solution and show that the proposed approach and testing system are capable of achieving a time-scale expansion factor of one (i.e., real time). Additionally, the proposed method allows accurate testing of structures with larger frequencies than when using conventional time delay compensation methods, thus extending the capabilities of the real-time hybrid testing technique. The method is then used to test a structure with a rate-dependent energy dissipation device, a magnetorheological damper. Results show good agreement with the predicted responses, demonstrating the effectiveness of the method to test rate-dependent components.

Effects of interface delay in real-time dynamic substructuring tests on a cable for cable-stayed bridge

  • Marsico, Maria Rosaria
    • Smart Structures and Systems
    • /
    • 제14권6호
    • /
    • pp.1173-1196
    • /
    • 2014
  • Real-time dynamic substructuring tests have been conducted on a cable-deck system. The cable is representative of a full scale cable for a cable-stayed bridge and it interacts with a deck, numerically modelled as a single-degree-of-freedom system. The purpose of exciting the inclined cable at the bottom is to identify its nonlinear dynamics and to mark the stability boundary of the semi-trivial solution. The latter physically corresponds to the point at which the cable starts to have an out-of-plane response when both input and previous response were in-plane. The numerical and the physical parts of the system interact through a transfer system, which is an actuator, and the input signal generated by the numerical model is assumed to interact instantaneously with the system. However, only an ideal system manifests a perfect correspondence between the desired signal and the applied signal. In fact, the transfer system introduces into the desired input signal a delay, which considerably affects the feedback force that, in turn, is processed to generate a new input. The effectiveness of the control algorithm is measured by using the synchronization technique, while the online adaptive forward prediction algorithm is used to compensate for the delay error, which is present in the performed tests. The response of the cable interacting with the deck has been experimentally observed, both in the presence of delay and when delay is compensated for, and it has been compared with the analytical model. The effects of the interface delay in real-time dynamic substructuring tests conducted on the cable-deck system are extensively discussed.

실내 아파트 환경에서의 통계적 UWB 채널 모델 (A Statistical Model for the Ultra-Wide Bandwidth Indoor Apartment Channel)

  • 박진환;이상협;방성일
    • 대한전자공학회논문지TC
    • /
    • 제42권9호
    • /
    • pp.19-28
    • /
    • 2005
  • 본 논문에서는 실제 아파트 환경에서 2000번의 주파수 응답에 의한 통계적 UWB 실내 채널 모델을 연구하였다. 측정은 서로 다른 방, 서로 다른 위치에서 이루어 졌으며, 실험 결과를 통해 채널의 전파특성을 이론적으로 설명하였다. Time-domain상에서 측정할 수 있는 channel impulse response (CIR)와 frequency-domain상에서 측정할 수 있는 channel transfer function (CTF) 측정방법을 제안하였다. 측정데이터를 통해서 CIR과 CTF를 비교하여 분석하였고, 통계적 경로손실 모델 또한 제안하였다. 신호 대역은 10MHz에서 8.010Hz까지 사용하였다. 측정결과를 통해 time-domain상에서 확인할 수 있는 maximum excess delay, mean excess delay, ms delay spread를 나타내었다. 송신기와 수신기에는 전방향의 biconical 안테나를 사용하였다. 또한 제안된 아파트 환경에서의 채널 모델은 UMB용 안테나 특성이 포함된 결과이다.

A Stage-Structured Predator-Prey System with Time Delay and Beddington-DeAngelis Functional Response

  • Wang, Lingshu;Xu, Rui;Feng, Guanghui
    • Kyungpook Mathematical Journal
    • /
    • 제49권4호
    • /
    • pp.605-618
    • /
    • 2009
  • A stage-structured predator-prey system with time delay and Beddington-DeAngelis functional response is considered. By analyzing the corresponding characteristic equation, the local stability of a positive equilibrium is investigated. The existence of Hopf bifurcations is established. Formulae are derived to determine the direction of bifurcations and the stability of bifurcating periodic solutions by using the normal form theory and center manifold theorem. Numerical simulations are carried out to illustrate the theoretical results.

외란과 시간 지연에 의한 수중 운동체의 오차 해석 (Error analysis of underwater vehicle under influence of disturbance and time delay)

  • 나윤철;이정규;권순홍;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.845-849
    • /
    • 1992
  • The disturbance and time delay can often cause a significant error in the estimation of trajectory of a underwater vehicle. The time delay considered in this study is due to the delayed rudder response to the rudder input from the guidance control part. The simulation tests are performed on maneuver with constant rudder angle, zigzag maneuver, dive-climb maneuver, and corridor pattern maneuver. The results are compared with those of without delay cases.

  • PDF

음성 신호를 이용한 시간지연 추정에 미치는 영향들에 관한 연구 (Factors for Speech Signal Time Delay Estimation)

  • 권병호;박영진;박윤식
    • 한국소음진동공학회논문집
    • /
    • 제18권8호
    • /
    • pp.823-831
    • /
    • 2008
  • Since it needs the light computational load and small database, sound source localization method using time delay of arrival(TDOA method) is applied at many research fields such as a robot auditory system, teleconferencing and so on. Researches for time delay estimation, which is the most important thing of TDOA method, had been studied broadly. However studies about factors for time delay estimation are insufficient, especially in case of real environment application. In 1997, Brandstein and Silverman announced that performance of time delay estimation deteriorates as reverberant time of room increases. Even though reverberant time of room is same, performance of estimation is different as the specific part of signals. In order to know that reason, we studied and analyzed the factors for time delay estimation using speech signal and room impulse response. In result, we can know that performance of time delay estimation is changed by different R/D ratio and signal characteristics in spite of same reverberant time. Also, we define the performance index(PI) to show a similar tendency to R/D ratio, and propose the method to improve the performance of time delay estimation with PI.

ON A DIFFUSIVE PREDATOR-PREY MODEL WITH STAGE STRUCTURE ON PREY

  • Lee, Seong
    • 충청수학회지
    • /
    • 제26권4호
    • /
    • pp.749-756
    • /
    • 2013
  • In this paper, we consider a diffusive delayed predator-prey model with Beddington-DeAngelis type functional response under homogeneous Neumann boundary conditions, where the discrete time delay covers the period from the birth of immature preys to their maturity. We investigate the global existence of nonnegative solutions and the long-term behavior of the time-dependent solution of the model.

Input Time-Delay Compensation for a Nonlinear Control System

  • Choi, Yong-Ho;Chong, Kil-To
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.395-400
    • /
    • 2004
  • In most physical processes, the transfer function includes time-delay, and in the general distributed control system using computer network, there exists inherent time-delay caused by the spatial separation between controllers and actuators. This work deals with the synthesis of a discrete-time controller for a nonlinear system and proposes a new effective method to compensate the influence of input time-delay. The controller is synthesized by using input/output linearization. Under the circumstance that input time-delay exists, the system response has more overshoot and tends to diverge. For these reasons, the controller has to produce future input value that will be needed for the system. In order to calculate the future input value, some predictors are adopted. Using the discretization via Euler's method, numerical simulations about the Van der Pol system are performed to evaluate the performance of the proposed method.

  • PDF

Design of a controller for input time-delay nonlinear system

  • Choi, Hyung-Jo;Choi, Yong-Ho;Chong, Kil-To
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.548-552
    • /
    • 2005
  • In most physical processes, the transfer function includes a time-delay, and in the general distributed control system using a computer network, an inherent time-delay exists due to the spatial separation between controllers and actuators. Under the circumstance where an input time-delay exits, the system response overshoots and tends to diverge. For this reasons described above, a controller design method is proposed for a discrete nonlinear system including input time-delay, which adopts the time-discretization using Taylor series. Controllers are synthesized using an input/output linearization method. Finally, several cases of the computer simulations were conducted, and the results validate the proposed methods.

  • PDF