• Title/Summary/Keyword: Response Error Function

Search Result 342, Processing Time 0.027 seconds

An Enhancement of Transfer Function Synthesis by Improving the Leakage Error of FRF (FRF 누설오차 개선에 의한 전달함수 합성법의 향상)

  • Ahn, Se-Jin;Jeong, Weui-Bong;Kim, Seung-Yup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.517-522
    • /
    • 2002
  • The frequency response function(FRF) of each substructure is used for the transfer function synthesis method(TFS). The dynamic characteristics of the full system are obtained by synthesizing FRFs of each substructure. The validation of TFS depends on accuracy for FRF of each substructure. Impact hammer testing is widely used to obtain the modal characteristics of structures. However, the FRF obtained from impact hammer testing contains several errors, such as finite record length error and leakage error of which characteristic depends on data acquisition time which we call record length. In this paper, a method to remove these errors is proposed so as to enhance results of TFS. Numerical examples show that the FRF of full structure can be predicted exactly by the method proposed in this paper.

  • PDF

A Suggestion of Method to Remove Bias Error of the FRF Obtained by FFT Analyzer - Application of TFS - (계측기에서 얻어진 주파수 응답 함수의 오차 제거 방안 - 전달함수 합성법에의 응용 -)

  • 김승엽;정의봉;서영수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.408-413
    • /
    • 2003
  • The frequency response function(FRF) of each substructure is used for the transfer function synthesis method(TFS). The dynamic characteristics of the full system are obtained by synthesizing FRFs of each substructure. The validation of TFS depends on accuracy for FRF of each substructure. Impact hammer testing Is widely used to obtain the modal characteristics of structures However. the FRF obtained from impact hammer testing contains bias errors, such as finite record length error and leakage error of which characteristic depends on data acquisition time which we call record length. In this paper, a method to remove hose errors is proposed so as to enhance results of TFS. Numerical and experimental examples show that the FRF of full structure can be predicted nearly exactly by the method proposed in this paper.

  • PDF

Rotation-Free Transformation of the Coupling Matrix with Genetic Algorithm-Error Minimizing Pertaining Transfer Functions

  • Kahng, Sungtek
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.3
    • /
    • pp.102-106
    • /
    • 2004
  • A novel Genetic Algorithm(GA)-based method is suggested to transform a coupling matrix to another, without the procedure of Matrix Rotation. This can remove tedious work like pivoting and deciding rotation angles needed for each of the iterations. The error function for the GA is simply formed and used as part of error minimization for obtaining the solution. An 8th order dual-mode elliptic integral function response filter is taken as an example to validate the present method.

An Enhancement of Multi-Dof Frequency Response Spectrum From Impact Hammer Testing (충격햄머 실험에서 다자유도 주파수 응답스팩트럼의 개선)

  • Ahn, Se-Jin;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.623-629
    • /
    • 2002
  • The spectrum of impulse response signal from an impulse hammer testing is widely used to obtain frequency response function(FRF) of the structure. However the FRFs obtained from impact hammer testing have not only leakage errors but also finite record length errors when the record length for the signal processing is not sufficiently long. The errors cannot be removed with the conventional signal analyzer which treats the signals as if they are always steady and periodic. Since the response signals generated by the impact hammer are transient and have damping, they are undoubtedly non-periodic. It is inevitable that the signals be acquired for limited recording time, which causes the finite record length error and the leakage error. In this paper, the errors in the frequency response function of multi degree of freedom system are formulated theoretically. And the method to remove these errors is also suggested. This method is based on the optimization technique. A numerical example of 3-dof model shows the validity of the proposed method.

  • PDF

The Improvement of Multi-dof Impulse Response Spectrum by Using Optimization Technique (최적화 기법을 이용한 다자유도 충격응답스펙트럼의 오차 개선)

  • 안세진;정의봉
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.10
    • /
    • pp.792-798
    • /
    • 2002
  • The spectrum of impulse response signal from an impulse hammer testing is widely used to obtain frequency response function (FRF) of the structure. However the FRFs obtained from impact hammer testing have not only leakage errors but also finite record length errors when the record length for the signal processing is not sufficiently long. The errors cannot be removed with the conventional signal analyzer which treats the signals as if they are always steady and periodic. Since the response signals generated by the impact hammer are transient and have damping, they are undoubtedly non-periodic. It is inevitable that the signals be acquired for limited recording time, which causes the finite record length error and the leakage error. In this paper, the errors in the frequency response function of multi degree of freedom system are formulated theoretically. And the method to remove these errors is also suggested. This method is based on the optimization technique. A numerical example of 3-dof model shows the validity of the proposed method.

Multiresponse Optimization Through A New Desirability Function Considering Process Parameter Fluctuation (공정변수의 변동을 고려한 호감도 함수를 통한 다중반응표면 최적화)

  • Kwon Jun-Bum;Lee Jong-Seok;Lee Sang-Ho;Jun Chi-Hyuck;Kim Kwang-Jae
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.1
    • /
    • pp.95-104
    • /
    • 2005
  • A desirability function approach to a multiresponse problem is proposed considering process parameter fluctuation which may amplify the variance of response. It is called POE (propagation of error), which is defined as the standard deviation of the transmitted variability in the response as a function of process parameters. In order to obtain more robust process parameter setting, a new desirability function is proposed by considering POE as well as distance-to-target of response and response variance. The proposed method is illustrated using a rubber product case in Ribeiro et al. (2000).

An Enhancement of Transfer Function Synthesis by Improving the Leakage Error of FRF (FRF 누설오차 개선에 의한 전달함수 합성법의 향상)

  • Ahn, Se-Jin;Jeong, Weui-Bong;Kim, Seung-Yup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.354.2-354
    • /
    • 2002
  • The frequency response function(FRF) of each substructure is used in the transfer function synthesis method(TFS). The dynamic characteristics of an entire system are obtained by synthesizing results of substructures. The accuracy of TFS will depend on that of FRF of each substructure. The impact hammer testing is widely used to obtain the modal characteristics of substructures. (omitted)

  • PDF

AGAPE-ET: A Predictive Human Error Analysis Methodology for Emergency Tasks in Nuclear Power Plants (원자력발전소 비상운전 직무의 인간오류분석 및 평가 방법 AGAPE-ET의 개발)

  • 김재환;정원대
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.104-118
    • /
    • 2003
  • It has been criticized that conventional human reliability analysis (HRA) methodologies for probabilistic safety assessment (PSA) have been focused on the quantification of human error probability (HEP) without detailed analysis of human cognitive processes such as situation assessment or decision-making which are crticial to successful response to emergency situations. This paper introduces a new human reliability analysis (HRA) methodology, AGAPE-ET (A guidance And Procedure for Human Error Analysis for Emergency Tasks), focused on the qualitative error analysis of emergency tasks from the viewpoint of the performance of human cognitive function. The AGAPE-ET method is based on the simplified cognitive model and a taxonomy of influencing factors. By each cognitive function, error causes or error-likely situations have been identified considering the characteristics of the performance of each cognitive function and influencing mechanism of PIFs on the cognitive function. Then, overall human error analysis process is designed considering the cognitive demand of the required task. The application to an emergency task shows that the proposed method is useful to identify task vulnerabilities associated with the performance of emergency tasks.

The Errors and Reducing Method in 1-dof Frequency Response Function from Impact Hammer Testing (충격햄머 실험에 의한 1자유도 주파수응답함수의 오차와 해결방법)

  • 안세진;정의봉
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.702-708
    • /
    • 2002
  • The spectrum of impulse response signal from an impulse hammer testing is widely used to obtain frequency response function(FRF). However the FRFs obtained from impact hammer testing have not only leakage errors but also finite record length errors when the record length for the signal processing is not sufficiently long. The errors cannot be removed with the conventional signal analyzer which treats the signals as if they are always steady and periodic. Since the response signals generated by the impact hammer are transient and have damping, they are undoubtedly non-periodic. It is inevitable that the signals be acquired for limited recording time, which causes the errors. This paper makes clear the relation between the errors of FRF and the length of recording time. A new method is suggested to reduce the errors of FRF in this paper. Several numerical examples for 1-dof model are carried out to show the property of the errors and the validity of the proposed method.

A Univariate Loss Function Approach to Multiple Response Surface Optimization: An Interactive Procedure-Based Weight Determination (다중반응표면 최적화를 위한 단변량 손실함수법: 대화식 절차 기반의 가중치 결정)

  • Jeong, In-Jun
    • Knowledge Management Research
    • /
    • v.21 no.1
    • /
    • pp.27-40
    • /
    • 2020
  • Response surface methodology (RSM) empirically studies the relationship between a response variable and input variables in the product or process development phase. The ultimate goal of RSM is to find an optimal condition of the input variables that optimizes (maximizes or minimizes) the response variable. RSM can be seen as a knowledge management tool in terms of creating and utilizing data, information, and knowledge about a product production and service operations. In the field of product or process development, most real-world problems often involve a simultaneous consideration of multiple response variables. This is called a multiple response surface (MRS) problem. Various approaches have been proposed for MRS optimization, which can be classified into loss function approach, priority-based approach, desirability function approach, process capability approach, and probability-based approach. In particular, the loss function approach is divided into univariate and multivariate approaches at large. This paper focuses on the univariate approach. The univariate approach first obtains the mean square error (MSE) for individual response variables. Then, it aggregates the MSE's into a single objective function. It is common to employ the weighted sum or the Tchebycheff metric for aggregation. Finally, it finds an optimal condition of the input variables that minimizes the objective function. When aggregating, the relative weights on the MSE's should be taken into account. However, there are few studies on how to determine the weights systematically. In this study, we propose an interactive procedure to determine the weights through considering a decision maker's preference. The proposed method is illustrated by the 'colloidal gas aphrons' problem, which is a typical MRS problem. We also discuss the extension of the proposed method to the weighted MSE (WMSE).