• 제목/요약/키워드: Respiration function

검색결과 184건 처리시간 0.027초

Respiration Rate and Oxygen Intake by Change of Wheelchair Backrest Angle

  • Chae, Soo-Young;Kwon, Hyuk-Cheol;Jeong, Dong-Hoon;Kong, Jin-Yong;Koo, Hyun-Mo
    • 한국전문물리치료학회지
    • /
    • 제12권4호
    • /
    • pp.26-32
    • /
    • 2005
  • This study was purposed to provide basic information on the correct application of a wheelchair's backrest angle by investigating the change in cardiopulmonary function according to backrest angle during propulsion. This study examined the effects of the wheelchair's backrest angle on the cardiopulmonary function by varying the angle to $0^{\circ}$, $10^{\circ}$ and $20^{\circ}$ with a propulsion velocity of 60 m/min. The experimental parameters were respiration rate, oxygen consumption rate and oxygen consumption rate/kg which were measured by a portable wireless oxygen consumption meter (COSMED, $K4b^2$). The results of the study were as follows: 1) There were no statistically significant differences in respiration rates due to changes in the wheelchair backrest angle (p>.05). 2) There were statistically significant differences in oxygen consumption rates due to changes in the wheelchair backrest angle (p<.05). 3) There were also statistically significant differences in the oxygen consumption rate/kg due to changes in the wheelchair backrest angle (p<.05). In conclusion, changes in the backrest angle of wheelchairs during propulsion influences oxygen consumption rates and heart rates, while respiration rates are not affected. Therefore, a training program for good seating and posture needs to be provided, and the wheelchair seating system should be equipped with the unadjustable-angle wheelchair to reduce the functional load on the cardiopulmonary system.

  • PDF

두부 전방전위 자세가 젊은 성인들의 호흡기능에 미치는 영향 (Effect of Forward Head Posture on Respiratory Function in Young Adults)

  • 김세윤;김난수;정주현;조명래
    • The Journal of Korean Physical Therapy
    • /
    • 제25권5호
    • /
    • pp.311-315
    • /
    • 2013
  • Purpose: Forward head posture is a typical symptom in people who use computers for long periods of time. Respiration is a complex function involving co-operation of muscular, skeletal, and nervous systems. Abnormal posture can have a negative effect on respiratory function. The purpose of this study was to investigate the relationship between forward head posture and respiratory function in young adults. Methods: Forty-six healthy subjects participated in this study. Craniovertebral angle was measured for assessment of the forward head posture. The respiratory function of all subjects was evaluated by measuring forced vital capacity (FVC), forced expiratory volume at one second (FEV1), forced expiratory volume at one second/forced vital capacity (FEV1/FVC) ratio, and peak expiratory flow (PEF). The baseline of forward head posture was less than 49 degrees. Results: : Significant differences for predicted FVC and FEV1 were observed between the two groups, however, no statistically significant differences in FEV1/FVC ratio and PEF were observed between the two groups. Conclusion: Results of this study demonstrate that forward head posture has a negative effect on respiratory function in young adults.

광용적맥파 신호를 이용한 수면 중 호흡 추정 (Estimation of Respiration Using Photoplethysmograph During Sleep)

  • 박종욱;이전;이효기;김호중;이경중
    • 대한의용생체공학회:의공학회지
    • /
    • 제34권3호
    • /
    • pp.105-110
    • /
    • 2013
  • Respiratory signal is one of the important physiological information indicating the status and function of the body. Recent studies have provided the possibility of being able to estimate the respiratory signal by using a change of PWV(pulse width variability), PRV(pulse rate variability) and PAV(pulse amplitude variability) in the PPG (photoplethysmography) signal during daily life. But, it is not clear whether the respiratory monitoring is possible even during sleep. Therefore, in this paper, we estimated the respiration from PWV, PRV and PAV of PPG signals during sleep. In addition, respiration rates of the estimated respiration signal were calculated through a time-frequency analysis, and errors between respiration rates calculated from each parameter and from reference signal were evaluated in terms of 1 sec, 10 sec and 1 min. As a result, it showed the errors in PWV(1s: $36.38{\pm}37.69$ mHz, 10s: $36.53{\pm}38.16$ mHz, 60s: $30.35{\pm}38.72$ mHz), in PRV(1s: $1.45{\pm}1.38$ mHz, 10s: $1.44{\pm}1.37$ mHz, 60s: $0.45{\pm}0.56$ mHz), and in PAV(1s: $1.05{\pm}0.81$ mHz, 10s: $1.05{\pm}0.79$ mHz, 60s: $0.56{\pm}0.93$ mHz). The errors in PRV and PAV are lower than that of PWV. Finally, we concluded that PRV and PAV are more effective than PWV in monitoring the respiration in daily life as well as during sleep.

Species-specific biomass drives macroalgal benthic primary production on temperate rocky reefs

  • Spector, Michael;Edwards, Matthew S.
    • ALGAE
    • /
    • 제35권3호
    • /
    • pp.237-252
    • /
    • 2020
  • Temperate rocky reefs dominated by the giant kelp, Macrocystis pyrifera, support diverse assemblages of benthic macroalgae that provide a suite of ecosystem services, including high rates of primary production in aquatic ecosystems. These forests and the benthic macroalgae that inhabit them are facing both short-term losses and long-term declines throughout much of their range in the eastern Pacific Ocean. Here, we quantified patterns of benthic macroalgal biomass and irradiance on rocky reefs that had intact kelp forests and nearby reefs where the benthic macroalgae had been lost due to deforestation at three sites along the California, USA and Baja California, MEX coasts during the springs and summers of 2017 and 2018. We then modeled how the loss of macroalgae from these reefs impacted net benthic productivity using species-specific, mass-dependent rates of photosynthesis and respiration that we measured in the laboratory. Our results show that the macroalgal assemblages at these sites were dominated by a few species of stipitate kelps and fleshy red algae whose relative abundances were spatially and temporally variable, and which exhibited variable rates of photosynthesis and respiration. Together, our model estimates that the dominant macroalgae on these reefs contribute 15 to 4,300 mg C m-2 d-1 to net benthic primary production, and that this is driven primarily by a few dominant taxa that have large biomasses and high rates of photosynthesis and / or respiration. Consequently, we propose that the loss of these macroalgae results in the loss of an important contribution to primary production and overall ecosystem function.

파킨슨병 환자의 말 특성과 언어치료 관련 국내문헌연구 (A Study of Korean Literature Review Related to Speech Characteristics and Speech Therapy in Patients with Parkinson Disease)

  • 강하늘;유재연
    • 대한후두음성언어의학회지
    • /
    • 제30권2호
    • /
    • pp.87-94
    • /
    • 2019
  • The purpose of this study was to investigate the speech characteristics and speech therapy of Parkinson disease (PD). This study selected 28 papers published in Korea from 1998 to 2018 after searching the terms 'Parkinson voice' and 'Parkinson speech therapy.' Literature review had been conducted in the two aspects of speech characteristics and speech therapy. The speech characteristics were divided into respiration, phonation, articulation, prosody, vowel production, and voice questionnaire. Speech therapy was divided into Lee Sliverman voice treatment (LSVT) and other voice therapy. PD patients did not differ in respiration function compared to normal elderly people, but their speech and articulation function were poorer. There was also a difference in the speech rate, frequency of pause, and accuracy of vowel production compared with normal elderly people. PD had a lower VHI score and their voice related quality of life was a little poorer. The LSVT was typically used in speech therapy for PD. The methods of speech therapy for PD have been shown to improve respiration and phonation. It is necessary to establish voice norms in PD patients and develop effective speech therapy in the following study.

수면 호흡 생리 (Respiratory Sleep Physiology)

  • 김진우;이상학
    • 수면정신생리
    • /
    • 제16권1호
    • /
    • pp.22-27
    • /
    • 2009
  • Regulation of respiration differs significantly between wakefulness and sleep. Respiration during wakefulness is influenced by not only automatic control but also voluntary and behavioral control. Sleep is associated with definite changes in respiratory function. With the onset of sleep, voluntary control of ventilation that overrides automatic control during wakefulness becomes terminated. Also ventilatory response to various stimuli including hypoxemia and hypercapnia is decreased. With these reasons respiration during sleep becomes fragile and unstable so that marked hypoxemia can be happened in patients with lung disease especially during REM sleep. Obstructive sleep apnea may also be developed if upper airway resistance is increased in addition to these blunted ventilatory responses.

  • PDF

Microprocessor를 이용한 Patient Monitor 개발(II) (Development of the Patient Monitor Using Microprocessor(II))

  • 김남현;김정래;허재만
    • 대한의용생체공학회:의공학회지
    • /
    • 제16권1호
    • /
    • pp.101-106
    • /
    • 1995
  • In this paper, the patient monitor consisting of ECG/Respiration Amplification, Front end CPU, Main CPU, Main Controller, Video Amplifier, Display Controller, Waveform Generator, Bus & Power Supply, 8097 Processor was developed. This patient monitor measures the patient's states in the hospital such as elecctro-cardiography, respiration, blood pressurae and temperature. The control and processing methods based on micro-processor employ the flexibility, extensibility over other conventional system. The followings are incorporated in this system. First, ECG/RESP measures the respiration by impedence pneumography. Second, FECPU utilizes an Intel 8031 microcontroller. Third, Controller function originate from a LSI CRT controller.

  • PDF

나노웹 섬유형 전극 인터페이스와 KHU Mark2 EIT 시스템을 이용한 생체신호 동기 도전율 영상법 (Gated Conductivity Imaging using KHU Mark2 EIT System with Nano-web Fabric Electrode Interface)

  • 김태의;김현지;위헌;오동인;우응제
    • 대한의용생체공학회:의공학회지
    • /
    • 제33권1호
    • /
    • pp.39-46
    • /
    • 2012
  • Electrical impedance tomography(EIT) can produce functional images with conductivity distributions associated with physiological events such as cardiac and respiratory cycles. EIT has been proposed as a clinical imaging tool for the detection of stroke and breast cancer, pulmonary function monitoring, cardiac imaging and other clinical applications. However EIT still suffers from technical challenges such as the electrode interface, hardware limitations, lack of animal or human trials, and interpretation of conductivity variations in reconstructed images. We improved the KHU Mark2 EIT system by introducing an EIT electrode interface consisting of nano-web fabric electrodes and by adding a synchronized biosignal measurement system for gated conductivity imaging. ECG and respiration signals are collected to analyze the relationship between the changes in conductivity images and cardiac activity or respiration. The biosignal measurement system provides a trigger to the EIT system to commence imaging and the EIT system produces an output trigger. This EIT acquisition time trigger signal will also allow us to operate the EIT system synchronously with other clinical devices. This type of biosignal gated conductivity imaging enables capture of fast cardiac events and may also improve images and the signal-to-noise ratio (SNR) by using signal averaging methods at the same point in cardiac or respiration cycles. As an example we monitored the beat by beat cardiac-related change of conductivity in the EIT images obtained at a common state over multiple respiration cycles. We showed that the gated conductivity imaging method reveals cardiac perfusion changes in the heart region of the EIT images on a canine animal model. These changes appear to have the expected timing relationship to the ECG and ventilator settings that were used to control respiration. As EIT is radiation free and displays high timing resolution its ability to reveal perfusion changes may be of use in intensive care units for continuous monitoring of cardiopulmonary function.

운동요법이 혈액투석 환자의 체력과 건강관련 삶의 질에 미치는 효과 (Effects of Exercise Intervention on Physical Fitness and Health-relalted Quality of Life in Hemodialysis Patients)

  • 장은정;김희승
    • 대한간호학회지
    • /
    • 제39권4호
    • /
    • pp.584-593
    • /
    • 2009
  • Purpose: The purpose of this study was to investigate the effect of stretching, muscle strengthening, and walking exercise on the cardiopulmonary function and health-related quality of life in hemodialysis patients. Methods: Twenty-one patients in the intervention and the control group participated in the exercise respectively on maintenance hemodialysis at four university hospitals. The exercise was composed of 20 to 60 min per session, 3 sessions a week for 12 weeks. The effect of exercise was assessed by cardiopulmonary function (peak oxygen uptake, peak ventilation, peak respiration rate, maximal heart rate, and exercise duration) using a cycle ergometer. Grip strength was measured by dynamometer, and flexibility was measured by sit and reach measuring instrument. Health-related quality of life was measured using Medical Outcomes Study Short Form-36. Results: Peak oxygen uptake, peak ventilation, peak respiration rate, exercise duration, grip strength, flexibility, and physical component scale were significantly improved in the intervention group after 12 week's exercise compared to the control group. Conclusion: These findings indicate the exercise can improve cardiopulmonary function, grip strength, flexibility, and physical component scale of health-related quality of life in hemodialysis patients.

초음파 센싱 방식의 이동형 호흡 측정 진단 시스템의 구현 (An Implementation of Mobile Respiration Detection Diagnostic System Using Ultrasound Sensing Method)

  • 김동학;김영길;정승호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 춘계종합학술대회
    • /
    • pp.514-517
    • /
    • 2003
  • 산소공급은 신체 요구 중 가장 기본적인 것이다. 호흡은 뇌의 연수(medulla oblongata)에 있는 호흡중추와 폐의 정상적 기능에 의해 조절된다. 즉 폐와 환경 사이의 공기 이동인 외 호흡과 헤모글로빈과 단세포 사이의 세포수준에서의 산소 이동인 내 호흡을 말한다. 성인의 호흡수는 보통 1분에 15-20회이나 연령, 운동, 기온, 심리적 변호, 질병상태, 대기의 산소 함량, 약물 투여 등에 따라 차이가 난다. 호흡측정은 대상자가 쉬고 있을 때 하는 것이 중요하다. 호흡 측정은 측정하고 있다는 사실을 대상자가 모르도록 기술적으로 해야한다. 현재 사용하는 방법은 주의를 끌지 않도록 대상자의 팔목에 손을 댄 채로 맥박을 측정한 바로 직후 계속해서 대상자의 가슴의 움직임을 관찰하면서 호흡을 측정하는 것이다. 본 논문에서 구현하고자 하는 것은 관성의 오차 및 압력의 오차에 영향을 거의 받지 않는, 그리고 반영구적으로 사용이 가능한 초음파 센서를 이용한 임베디드 환경의 호흡 량 측정기이다.

  • PDF