• 제목/요약/키워드: Resonance testing

검색결과 200건 처리시간 0.028초

Impact-Resonance Testing of Concrete Structures (콘크리트 구조물의 충격공진 시험)

  • Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제23권5호
    • /
    • pp.526-531
    • /
    • 2003
  • Condition assessment of concrete structures is essential since their performance affects public safety. Impact resonance testing has been widely used for the nondestructive testing of the concrete structures. In this article, the background, basic principles of the impact resonance testing were described. Not only laboratory studies but also the field applications such as basement concrete of large structure and large slurry wall are described.

A New Method for Antimicrobial Susceptibility Testing of Vitro-cultured Bacteria by Means of Resonance Light Scattering Technique

  • Shi, Yu-Jun;Chen, Jun;Xu, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.118-123
    • /
    • 2008
  • A new method for antimicrobial susceptibility testing of vitro-cultured bacteria on an ordinary fluorescence spectrometer was developed. The viable bacteria reduced 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) to produce insoluble particles that displayed intense resonance scattering light. The assay showed a linear relationship between the number of viable bacteria and the intensity of resonance scattering light. Dead bacteria were unable to reduce MTT. Methicillin-resistant Staphylococcus aureus exposed to flavonoids from Marchantia convoluta showed a flavonoids concentration-dependent inhibition of the ability to reduce MTT. In the assay, less than 12 h was required to attain susceptibility results and fewer bacteria were utilized than in traditional methods. The RLS technique could, in combination with the MTT assay, be a rapid and sensitive measuring method to determine the in vitro activity of new antimicrobials.

Evaluation of the Dynamic Modulus by using the Impact Resonance Testing Method (비파괴충격파 시험법을 이용한 동탄성계수 평가)

  • Kim, Dowan;Jang, ByungKwan;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • 제16권3호
    • /
    • pp.35-41
    • /
    • 2014
  • PURPOSES : The dynamic modulus for a specimen can be determined by using either the non-destructed or destructed testing method. The Impact Resonance Testing (IRT) is the one of the non-destructed testing methods. The MTS has proved the source credibility and has the disadvantages which indicate the expensive equipment to operate and need a lot of manpower to manufacture the specimens because of the low repeatability with an experiment. To overcome these shortcomings from MTS, the objective of this paper is to compare the dynamic modulus obtained from IRT with MTS result and prove the source credibility. METHODS : The dynamic modulus obtained from IRT could be determined by using the Resonance Frequency (RF) from the Frequency Response Function (FRF) that derived from the Fourier Transform based on the Frequency Analysis of the Digital Signal Processing (DSP)(S. O. Oyadigi; 1985). The RF values are verified from the Coherence Function (CF). To estimate the error, the Root Mean Squared Error (RMSE) method could be used. RESULTS : The dynamic modulus data obtained from IRT have the maximum error of 8%, and RMSE of 2,000MPa compared to the dynamic modulus measured by the Dynamic Modulus Testing (DMT) of MTS testing machine. CONCLUSIONS : The IRT testing method needs the prediction model of the dynamic modulus for a Linear Visco-Elastic (LVE) specimen to improve the suitability.

Evaluation of Elastic Properties of Anisotropic Cylindrical Tubes Using an Ultrasonic Resonance Scattering Spectroscopy

  • Kim, Jin-Yeon;Li, Zheng
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제30권6호
    • /
    • pp.548-557
    • /
    • 2010
  • An ultrasonic resonance scattering spectroscopy technique is developed and applied for reconstructing elastic constants of a transversely isotropic cylindrical component. Immersion ultrasonic measurements are performed on tube samples made from a boron/aluminum composite material to obtain resonance frequencies and dispersion curves of different guided wave modes propagating in the tube. Theoretical analysis on the acoustic resonance scattering from a transversely isotropic cylindrical tube is also performed, from which complete backscattering and resonance scattering spectra and theoretical dispersion curves are calculated. A sensitive change of the dispersion curves to the elastic properties of the composite tube is observed for both normal and oblique incidences; this is exploited for a systematic evaluation of damage and elastic constants of the composite tube samples. The elastic constants of two boron/aluminum composite tube samples manufactured under different conditions are reconstructed through an optimization procedure in which the residual between the experimental and theoretical phase velocities (dispersion curves) is minimized.

Development of the Predicted Model for the HMA Dynamic Modulus by using the Impact Resonance Testing and Universal Testing Machine (충격공진실험과 만능재료시험기에 의한 아스팔트 공시체의 동탄성계수 예측 모델 개발)

  • Kim, Do Wan;Kim, Dong-Ho;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • 제16권3호
    • /
    • pp.43-50
    • /
    • 2014
  • PURPOSES : The dynamic modulus can be determined by applying the various theories from the Impact Resonance Testing(IRT) Method. The objective of this paper is to determine the best theory to produce the dynamic modulus that has the lowest error as the dynamic modulus data obtained from these theories(Complex Wave equation Resonance Method related to either the transmissibility loss or not, Dynamic Stiffness Resonance Method) compared to the results for dynamic modulus determined by using the Universal Testing Machine. The ultimate object is to develop the predictive model for the dynamic modulus of a Linear Visco-Elastic specimen by using the Complex Wave equation Resonance Method(CWRM) came up for an existing study(S. O. Oyadiji; 1985) and the Optimization. METHODS : At the destructive test which uses the Universal Testing Machine, the dynamic modulus results along with the frequency can be used for determining the sigmoidal master curve function related to the reduced frequency by applying Time-Temperature Superposition Principle. RESULTS : The constant to be solved from Eq. (11) is a value of 14.13. The reduced dynamic modulus obtained from the IRT considering the loss factor related to the impact transmissibility has RMSE of 367.7MPa, MPE of 3.7%. When the predictive dynamic modulus model was applied to determine the master curve, the predictive model has RMSE of 583.5MPa, MPE of 3.5% compared to the destructive test results for the dynamic modulus. CONCLUSIONS : Because we considered that the results obtained from the destructive test had the most highest source credibility in this study, the dynamic modulus data obtained respectively from DSRM, CWRM were compared to the results obtained from the destructive test by using th IRT. At the result, the reduced dynamic modulus derived from DSRM has the most lowest error.

The Measurement of the Resonance Frequency of Transducer by Ultrasonic Visualization (초음파의 가시화에 의한 진동자의 공진주파수 측정에 관한 연구)

  • Lee, B.S.;Han, E.K.;Song, C.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제13권3호
    • /
    • pp.14-23
    • /
    • 1993
  • A method to measure the resonance frequency of the ultrasonic transducer which is adhered to the specimen by the ultrasonic visualization is tried. The result shows that the resonance frequency of the transducer adhered to the specimen is lower than the nominal resonance frequency of the transducer in itself and the greater the degree of deviation. It is verified that its cause is the resonance of Al-plate for protecting the transducer by the theoretical analysis.

  • PDF

Construction of Simple Synthetic Testing Facility Using LC Resonance Circuit (L-C 공진회로를 이용한 대용량 간이 합성시험 설비 구축)

  • Kwon, G.J.;Kim, D.S.;Song, W.P.;Kwon, G.Y.;Chung, J.M.;Park, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 A
    • /
    • pp.409-411
    • /
    • 1999
  • This paper proposes the circuit of the simple synthetic testing facility using LC resonance circuit. EMTP has been used to analyze the circuit. The obtained results indicate that the simple synthetic testing facility using LC resonance circuit can be easily designed and used very usefully for the research and development for the switchgears.

  • PDF

High-speed Microcantilever Resonance Testing on the Young's Modulus of a Nanoscale Titanium Film (고속 마이크로 외팔보 공진시험을 통한 나노스케일 티타늄 박막의 탄성계수 평가)

  • Kim, Yun Young
    • Journal of the Korean institute of surface engineering
    • /
    • 제50권5호
    • /
    • pp.392-397
    • /
    • 2017
  • The Young's modulus of a nanoscale titanium (Ti) thin-film was evaluated using a high-speed microcantilever resonating at the megahertz frequency in the present study. A 350 nm thick Ti film was deposited on the surface of a silicon microcantilever, and the morphology of the film was analyzed using the atomic force microscopy. The microcantilever was excited to resonate using an ultrasonic pulser that generates tone burst signals and the resonance frequency shift induced by the deposition of Ti was measured using a Michelson interferometer. The Young's modulus was determined through a modal analysis using the finite element method and the result was validated by the nanoindentation testing, showing good agreement within a relative error of 1.0%. The present study proposes a nanomechanical characterization technique with enhanced accuracy and sensitivity.

Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure (다중접착구조물의 초음파 공진 신호 분석)

  • Kim, Dong-Ryun;Kim, Jae-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제32권4호
    • /
    • pp.401-409
    • /
    • 2012
  • Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

Simple Synthetic Testing Facility Using LC Resonance Circuit (LC 공진회로를 이용한 간이 합성시험설비)

  • Park, J.H.;Shin, Y.J.;Park, K.Y.;Ryu, H.G.;Kim, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.631-635
    • /
    • 1993
  • This paper shows the procedure to determine the physical variables of the simple synthetic testing facility using LC resonance circuit and presents the calculated results of those variables for the LC resonance circuit which can be used to test circuit breakers up to 36kV 40kA class. Attention has also been paid to the advantages of the LC resonance circuit compared with the method adopting short-circuit generator for the development of circuit breakers.

  • PDF