• 제목/요약/키워드: Resonance Mode

검색결과 807건 처리시간 0.027초

Effect of Mixing Section Resonance Mode on Dynamic Combustion Characteristics in a Swirl-Stabilized Combustor (스월-안정화 연소기에서 혼합기 공진모드가 동적 연소특성에 미치는 영향)

  • Han, Sunwoo;Lee, Shinwoo;Hwang, Donghyun;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • 제27권1호
    • /
    • pp.18-25
    • /
    • 2022
  • Hot-firing tests were performed to experimentally confirm the effect of the eigenmode in the fuel-air mixing section on combustion instability by changing mixing section length, inlet mean velocity, equivalence ratio, and swirler geometry. A premixed gas composed of air and ethylene was supplied to the combustion chamber through an mixing section and an axial swirler. As the mixing section length increased, the inlet velocity perturbation decreased, but the combustion instability increased more. It was found that the resonance frequency of the first longitudinal mode in the mixing section shifted to the third longitudinal mode as the length of the mixing section increased. The results implied that the transition of the resonace frquency by changing the length of the mixing section might cause combustion instability.

Acoustic Investigation on BFP Piping System in a Power Plant (발전소 급수용 펌프 배관계의 음향학적 현상 고찰)

  • Yang, K.H.;Cho, C.H.;Bae, C.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제21권11호
    • /
    • pp.1029-1035
    • /
    • 2011
  • Pressure pulsation of exciting sources that generally occurs on the piping system connected to the discharge of BFP(boiler feed water pump) in power plants causes wave reflection, wave interference, resonance, standing wave and so on. But if the operating speed of the pump is changed, the state of the noise and vibration can be done because characteristics of the exciting source are changed. This paper is to investigate the cause of the noise and vibration occurring on the piping system when the operating speed of BFP is down in accordance with lowering of the power generation. It is approached to two points of view ; Firstly, it is examined whether the pulsation source impacts on the shell mode vibration that vibrates radially across the cross-section of the pipe. But it doesn't affect the shell mode as much as the resonance occurs. Secondly, to find the relation between the pulsation source and the acoustic mode of the piping system, analysis for the piping system by indirect BEM(boundary element method) is carried out. Therefore it is investigated that the mechanism of the noise and vibration relates with acoustic mode of the piping system.

Effects of Light Incident Mode on Optical Scattering of Au Nanoparticle by Localized Surface Plasmon Resonance (빔의 입사모드가 금 나노입자의 국소표면플라즈몬 산란광에 미치는 영향)

  • Lee, Taek-Sung;Lee, Kyeong-Seok;Kim, Won-Mok;Lee, Jang-Kyo;Byun, Seok-Joo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제22권4호
    • /
    • pp.307-313
    • /
    • 2009
  • Quantitative analysis of optical scattering intensities from a Au nanoparticle with a diameter of 100 nm, which is effected by the localized surface plasmon resonance (LSPR), were numerically carried out by using a dark-field detection scheme on prism basal plane for two different beam incident modes of reflectance (R-mode) and transmittance (T-mode). Two-dimensional finite difference time domain (FDTD) algorithm was adopted, and its applicabilibility was verified by comparing the simulation results with the theoretical ones. Simulation results of the scattered light intensities from a Au nanoparticle revealed that the scattered intensity of the T-mode was much stronger than that of R-mode. Comparison of the calculated results with the theoretical intensity distribution on the prism showed that the scattered intensity is marimized when the evanescent field, which is generated from the interface of prism and air at TIR angle, is coupled with Au nanoparticle.

An Analysis of the Dynamic Response and Vibrational Mode for the Cantilevered Beam (외팔보의 동적응답과 진동모드 분석)

  • Kim, Ye-Hyun;Go, Young-Jun;Kang, Byoung-Yong;Chang, Ho-Gyeong
    • The Journal of the Acoustical Society of Korea
    • /
    • 제16권1호
    • /
    • pp.16-23
    • /
    • 1997
  • As analysis of the forced dynamic response and vibrational mode for the cantilevered beam is described. Experimental results are compared with the natural frequencies and vibrational modes for the cantilevered beam using the theory of Bernoulli-Euler and finite element method. We have found 1st and 2nd resonance frequency of the cantilevered beam by means of the various external frequencies, $1{\sim}70Hz$, using magnetic transducer. And we have studied the vibrational displacement at obtained resonance frequency of the cantilevered beam. The experimental results for the nodes of cantilevered beam were 0 in 1st mode and 0,0.786 in 2nd mode. close agreement between the theoretically predicted results and experimental result was obtained for the vibrational mode.

  • PDF

Changes in Transmitting-Receiving Characteristics of Underwater Acoustic Transducer by Transformer (트랜스포머에 의한 수중 음향 트랜스듀서의 송수신 특성의 변화)

  • 조치영;이정민
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.493-499
    • /
    • 1997
  • In this study, the changes in transmitting and receiving characteristics, especially resonance frequencies, of the underwater acoustic planar array transducer by the transformers used in the analog weighting circuit are investigated. Electrical equivalent circuit analysis shows that an ideal transformer does not change the resonance frequency of the transmitting mode, but the resonance frequency which gives the maximum receiving sensitivity can be designed by adjusting the magnitude of reactance of transformer.

  • PDF

Design of a Ultrasonic Cutting-tool Utilizing Resonance Condition of Transverse Vibration of Beam Type Structure (보의 횡진동 공진특성을 이용한 초음파 진동절삭공구 설계)

  • Byun, Jin-Woo;Han, Sang-Bo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제21권8호
    • /
    • pp.720-725
    • /
    • 2011
  • Most ultrasonic vibration cutting tools are operated at the resonance condition of the longitudinal vibration of the structure consisting of booster, horn and bite. In this study, a transverse vibration tool with beam shape is designed to utilize the vibration characteristics of the beam. Design point of the transverse vibration tool is to match the resonance frequency of the bite to the frequency of the signal to excite the piezoelectric element in the booster. The design process to match the natural frequency of the longitudinal vibration mode of the horn and that of the transverse vibration mode of the bite is presented. Dimensions of the horn and bite are searched by trend analysis through which the standard shapes of the horn and bite are determined. After the dimensions of each component of the cutting tool consisting of booster, horn and bite are determined, the assembled structure was experimentally tested to verify that true resonant condition is achieved and proper vibrational displacement are obtained to ensure that enough cutting force is generated.

Discrete-time Sliding Mode Control with Input Shaping for flexible systems

  • Woo, Lim-Hyun;Choo, Chung-Chung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.130.5-130
    • /
    • 2001
  • This paper presents a discrete-time sliding mode control method for linear time-invariant systems with matched uncertainties. In this paper, we suggest a method of adding a command generator using input shaping filter to a discrete-time sliding mode controller. We design the number of steps required to reach the sliding layer and the magnitude of a control input, respectively using the shaping filter. Therefore we can minimize the excitation of the resonance mode and increase the tracking performance of a system. Simulation results are included to show its effectiveness.

  • PDF

Phase Change for One to One Resonance of Nonlinear Cantilever Beam (비선형 외팔보의 일대일 공진에서의 위상변화)

  • Kim, Myoung-Gu;Pak, Chul-Hui;Cho, Chong-Du;Cho, Ho-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.703-708
    • /
    • 2006
  • The cantilever beam with nonlinearity has many dynamic characteristics of nonlinear vibration. Nonlinear terms of a flexible cantilever beam include inertia, spring, damping, and warping. When the beam is given basic harmonic excitation, it shows planar and nonplanar vibrations due to one-to-one resonance. And when the one-to-one resonance occurs, the flexible beam shows different behaviors in those vibrations. For the one-to-one resonance occurring in each mode, the phase value of the planar vibration is different from that of the nonlinear vibration. This paper investigates the phase change and the phase difference between such planar and nonplanar vibrations which are caused by one-to-one resonance.

  • PDF

Phase Change for One to One Resonance of Nonlinear Cantilever Beam (비선형 외팔보의 일대일 공진에서의 위상변화)

  • Pak, Chul-Hui;Cho, Chong-Du;Cho, Ki-Cheol;Kim, Myoung-Gu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제17권1호
    • /
    • pp.48-54
    • /
    • 2007
  • The cantilever beam with nonlinearity has many dynamic characteristics of nonlinear vibration. Nonlinear terms of a flexible cantilever beam include inertia, spring, damping, and warping. When the beam is given basic harmonic excitation, it shows planar and nonplanar vibrations due to one-to-one resonance. And when the one-to-one resonance occurs, the flexible beam shows different behaviors in those vibrations. For the one-to-one resonance occurring in each mode, the phase value of the planar vibration is different from that of the nonlinear vibration. This paper investigates the phase change and the phase difference between such planar and nonplanar vibrations which are caused by one-to-one resonance.

Analysis of GMR Phenomenon by Asymmetric Multi-layered Dielectric Gratings (비대칭 다층 유전체 격자구조에 의한 GMR 현상의 분석)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제17권3호
    • /
    • pp.209-214
    • /
    • 2017
  • A plane-wave incident upon asymmetric multi-layered dielectric grating as well as symmetric grating structure generates space harmonics. Selected space harmonics among those harmonics can undergo strong resonance scattering variations known as GMR(guided-mode resonance). In this paper, to clarify these effects, the field propagation and dispersion curve inside the grating region are analyzed by using a rigorous equivalent transmission-line theory(RETT) based on eigenvalue problem. The results show that, at the peak of a scattering resonance, the reflected mode is almost identical to a leaky wave that can be supported by the grating structure. Thus, it confirms to be occurred GMR effect associated with the free-resonant character of leaky waves at asymmetric multi-layered dielectric gratings. Quantitative simulation results illustrating the behavior of typical gratings are given, and the special case of normal incidence is discussed for TE and TM modes.