• Title/Summary/Keyword: Resonance Frequency Analysis

Search Result 978, Processing Time 0.037 seconds

Frequency-Domain Circuit Model and Analysis of Coupled Magnetic Resonance Systems

  • Huh, Jin;Lee, Wooyoung;Choi, Suyong;Cho, Gyuhyeong;Rim, Chuntaek
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.275-286
    • /
    • 2013
  • An explicit frequency-domain circuit model for the conventional coupled magnetic resonance system (CMRS) is newly proposed in this paper. Detail circuit parameters such as the leakage inductances, magnetizing inductances, turn-ratios, internal coil resistances, and source/load resistances are explicitly included in the model. Accurate overall system efficiency, DC gain, and key design parameters are deduced from the model in closed form equations, which were not available in previous works. It has been found that the CMRS can be simply described by an equivalent voltage source, resistances, and ideal transformers when it is resonated to a specified frequency in the steady state. It has been identified that the voltage gain of the CMRS was saturated to a specific value although the source side or the load side coils were strongly coupled. The phase differences between adjacent coils were ${\pi}/2$, which should be considered for the EMF cancellations. The analysis results were verified by simulations and experiments. A detailed circuit-parameter-based model was verified by experiments for 500 kHz by using a new experimental kit with a class-E inverter. The experiments showed a transfer of 1.38 W and a 40 % coil to coil efficiency.

Evaluation of Young's Modulus of a Cantilever Beam by TA-ESPI (TA-ESPI에 의한 외팔보의 탄성계수 측정)

  • Lee H.S.;Kim K.S.;Kang K.S.;Jung H.C.;Yang S.P.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1115-1119
    • /
    • 2005
  • The paper proposes the elastic modulus evaluation technique of a cantilever beam by vibration analysis based on time-average electronic speckle pattern interferometry (TA-ESPI) with non-contact and nondestructive and Euler-Bernoulli equation. General approaches for the measurement of elastic modulus of thin film are Nano indentation test, Bulge test and Micro-tensile test and so on. They each have strength and weakness in the preparation of test specimen and the analysis of experimental result. ESPI has been developed as a common measurement method for vibration mode visualization and surface displacement. Whole-field vibration mode shape (surface displacement distribution) at a resonance frequency can be visualized by ESPI. And the maximum surface displacement distribution from ESPI is a clue to find the resonance frequency at each vibration mode shape. And the elastic modules of test material can be easily estimated from the measured resonance frequency and Euler-Bernoulli equation. The TA-ESPI vibration analysis technique is able to give the elastic modulus of materials through the simple processing of preparation and analysis.

  • PDF

In vitro evaluation of resonance frequency analysis values to different implant contact ratio and stiffness of surrounding material

  • Kwak, Mu-Seung;Kim, Seok-Gyu
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.4
    • /
    • pp.428-433
    • /
    • 2013
  • PURPOSE. The present study was aimed to evaluate the influence of implant contact ratio and stiffness of implant-surrounding materials on the resonance frequency analysis (RFA) values. MATERIALS AND METHODS. Seventy resin blocks that had the different amounts (100, 50, 30, 15%) of resin-implant contact (RIC) were fabricated. Ten silicone putty blocks with 100% silicone-implant contact were also made. The implants with ${\phi}5.0mm{\times}13.0mm$ were placed on eighty specimen blocks. The RFA value was measured on the transducer that was connected to each implant by Osstell Mentor. Kruskal-Wallis and Scheffe's tests (${\alpha}$=.05) were done for statistical analysis. RESULTS. The control resin group with 100% RIC had the highest RFA value of 83.9, which was significantly different only from the resin group with 15% RIC among the resin groups. The silicone putty group with 100% contact had the lowest RFA value of 36.6 and showed statistically significant differences from the resin groups. CONCLUSION. Within the limitations of this in vitro study, there was no significant difference in the RFA values among the resin groups with different RIC's except when the RIC difference was more than 85%. A significant increase in the RFA value was observed related to the increase in stiffness of material around implant.

Non-submerged type implant stability analysis during initial healing period by resonance frequency analysis (Resonance frequency analysis를 이용한 non-submerged type 임플란트의 초기 안정성 분석)

  • Kim, Deug-Han;Pang, Eun-Kyoung;Kim, Chang-Sung;Choi, Seong-Ho;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.3
    • /
    • pp.339-348
    • /
    • 2009
  • Purpose: The purpose of the present study was to analyze the implant stability quotient(ISQ) values for Korean non-submerged type implant and determine the factors that affect implant stability. Methods: A total of 49 Korean non-submerged type implants were installed in 24 patients, and their stability was measured by resonance frequency analysis(RFA) at the time of surgery, and 1, 2, 3, 4, 8, 12 weeks postoperatively. The data for implant site, age, sex, implant length and diameter, graft performing, bone type, and insertion torque were analyzed. Results: The lowest mean stability measurement was at 3 weeks. There was significant difference between implant placement and 12 weeks. There was significant difference between implant placement and 12 weeks in diameters of 4.1 mm and 4.8 mm. Also, there were significant differences between diameters of 4.1 mm and 4.8 mm at implant placement and 12 weeks after surgery. This result suggests that the factor related to implant diameter may affect the level of implant stability. No statistically significant relationship was found between the resonance frequency analysis and the variables of maxilla/mandible, sex, anterior/posterior, implant length, age of patient, graft performing, bone type, insertion torque during initial healing period. Conclusions: These findings suggest that the factor related to implant diameter may affect the variance of implant stability, and ISQ value of implant was stable enough for proved stability level during initial healing period.

CORRELATION ASSESSMENT BETWEEN RESONANCE FREQUENCY ANALYSIS AND RADIOGRAPHIC METHOD ACCORDING TO PERI-IMPLANT BONE CHANGE

  • Lee Mi-Ran;Cho Lee-Ra;Yi Yang-Jin;Choi Hang-Moon;Park Chan-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.6
    • /
    • pp.736-744
    • /
    • 2005
  • Statement of problem. Initial stability of implant is an important factor for predicting osseointegration. It requires a rapid, non-invasive, user-friendly technique to frequently assess the implant stability and the degree of osseointegration. Purpose. The aim of this study was to evaluate the correlation between the resonance frequency analysis (RFA) and the radiographic method for peri-implant bone change under in vitro conditions. Material and Method. Twenty implants of 3.75 mm in diameter(Neoplant, Neobiotech, Korea) were used. To simulate peri-implant bone change, 2 mm-deep $45^{\circ}$ range horizontal defect and 2 mm-deep $90^{\circ}$ range horizontal defect area were serially prepared perpendicular to the X-ray beam after conventional implant insertion. Customized film holding device was fabricated to standardize the projection geometry for serial radiographs of implants and direct digital image was obtained. ISQ values and gray values inside threads were measured before and after peri-implant bone defect preparation. Results. Within a limitation of this study, ISQ value of resonance frequency analysis was changed according to peri-implant bone change (p<0.05) and gray value of radiographic method was changed according to peri-implant bone change (p<0.05). There was no correlation between the ISQ value and the gray value for peri-implant bone change (p>0.05). But, in horizontal defect condition, relatively positive correlation were between ISQ and gray values(r=0.663). Conclusion. This results provided a possibility that peri-implant bone change may be evaluated by both RFA and radiographic method.

Evaluation of DNA Damage Using Microwave Dielectric Absorption Spectroscopy

  • Hirayama, Makoto;Matuo, Youichirou;Sunagawa, Takeyoshi;Izumi, Yoshinobu
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.339-343
    • /
    • 2016
  • Background: Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pretreatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. Materials and Methods: The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. Results and Discussion: The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. Conclusion: We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy.

A Parameter Study on the Frequency Characteristics Control of Implantable Bone Conduction Transducer Using FEA (FEA를 이용한 이식형 골전도 진동체의 주파수 특성 제어에 관한 파라미터 연구)

  • Shin, Dong Ho;Kim, Myoung Nam
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.1040-1048
    • /
    • 2020
  • In this study, in order to improve the implantable bone conduction transducer of the prototype proposed by Shin et al., the effect of the element parameters of the transducer on the frequency characteristics was analyzed using electromagnetic and mechanical vibration analysis. Electromagnetic analysis was performed on the size of the permanent magnet and the distance between the metal plate and the coil to derive an optimal structure that generates the maximum Lorentz force. In addition, mechanical vibration analysis was performed on the cantilever structure of the vibrational membrane in order to minimize the distortion of the transducer and to have a frequency characteristic suitable for conductive hearing loss compensation. The frequency characteristics of the transducer of the optimal structure derived through finite element method were compared with the simulation results of the previous transducer. As a result, the output magnitude (displacement) of the transducer designed with the optimal structure generated an average 8.8 times higher than the previous transducer, and the resonance frequency was generated at 0.9 kHz.

An Experimental Study for Preventing the Resonance of Steam Turbine Blade (증기터빈 블레이드의 공진 방지를 위한 실험 연구)

  • 하현천;이동진;류석주
    • Journal of KSNVE
    • /
    • v.11 no.3
    • /
    • pp.410-415
    • /
    • 2001
  • This paper describes an experimental analysis for improving the stability of blade failure due to the vibration resonance, which happens in the low-pressure steam turbine. Some cracks due to high cycle fatigue were found in the blades of a low-pressure turbine after long time operation. Impact test showed that such failure was mainly caused by the resonance. In other words, since one of the natural frequencies of the grouped blade is very close to the excitation frequency of the nozzle, the resonant vibration leads to a large amplitude of displacement and results in a large amount of stress that may cause fatigue failures in the blades. It is interesting that the blade failures occur only at blades neighboring with the nodal points of the natural vibration mode whose natural frequency is close to the nozzle passing frequency. The effective methods for increasing the reliability against the blade vibration are a heightening the fatigue limit of the blade using an advanced material and a removing the resonance away from the operating speed. It is well known that the removal of theresonance could be obtained by the installation of different types of shrouds, wires, and links between the blades as well as by the chance of the number of nozzles. In the present work, two kinds of modification for avoiding the resonance haute been considered; 1) slot-type finger, 2) long span cover. Full-scale mockup tests have been performed in order to confirm the verification for modification in the shop. Test results show that the use of long span cover is very useful to change the natural frequencies of the grouped blade and to avoid the resonance effectively.

  • PDF

Vibration Characteristics of the Fruit and Vegetables during Transportation (I) - Vibration Charateristics of the Pear by Experimental Analysis - (유통중 청과물의 진동 특성 연구 (I) - 실험적 해석에 의한 배의 진동특성 -)

  • Kim, Man-Soo;Jung, Hyun-Mo;Kim, Ghi-Seok;Park, Chung-Gil
    • Korean Journal of Agricultural Science
    • /
    • v.30 no.2
    • /
    • pp.175-183
    • /
    • 2003
  • Fruit and vegetables are subjected to complex dynamic stresses in the transportation environment. During a long journey from the production area to markets, there is always some degree of vibration present. Vibration inputs are transmitted from the vehicle through the packaging to the fruit. Inside, these cause sustained bouncing of fruits against each other and container wall. These steady state vibration input may cause serious fruit injury, and this damage is particularly severe whenever the fruit inside the package is free to bounce, and is vibrated at its resonance frequency. The determination of the resonance frequencies of the fruit and vegetables may help the packaging designer to determine the proper packaging system providing adequate protection for the fruit, and to understand the complex interaction between the components of fruit when they relate to expected transportation vibration inputs. Instrumentation and technologies are described for determining the vibration response characteristics of the fruits with frequency range 3 to 150 Hz. The computer program for controlling the vibration exciter and the function generator and for measuring the vibration response characteristics of the fruits was developed. The resonance frequency of the pear ranged from 64.5 to 72.2 Hz and the amplitude at resonance was between 1.78 and 2.21 G-rms. The resonance frequency and amplitude at resonance decreased with the increase of the sample mass, and they were slightly affected by mechanical properties such as bioyield deformation and rupture deformation. Regression analysis was performed among the relatively high correlated parameters from the results of correlation coefficient analysis.

  • PDF

Fault Current Waveform Analysis of a Flux-Lock Type SFCL According to LC Resonance Condition of Third Winding

  • Lim, Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.213-217
    • /
    • 2008
  • The flux-lock type superconducting fault current limiter(SFCL) can apply the magnetic field into the high-$T_C$ superconducting(HTSC) element by adopting the magnetic field coil in its third winding. To apply the magnetic field into the HTSC element effectively, the capacitor for LC resonance is connected in series with the magnetic field coil. However, the current waveform of third winding for the application of the magnetic field is affected by the LC resonance condition for the frequency of the source voltage and can affect the waveform of the limited fault current. In this paper, the current waveform of the third winding in the flux-lock type SFCL according to LC resonance condition during a fault period was analyzed. From the differential equation for its electrical circuit, the current equation of the third winding was derived and described with the natural frequency and the damping ratio as design parameters. Through the analysis according to the design parameters of the third winding, the waveform of the limited fault current was confirmed to be influenced by the current waveform of the third winding and the design condition for the stable fault current limiting operation of this SFCL was obtained.