• Title/Summary/Keyword: Resonance Frequency Analysis

Search Result 984, Processing Time 0.028 seconds

Evaluation of Elastic Properties for Nanoscale Coating Layers Using Ultrasonic Atomic Force Microscopy (초음파원자현미경을 이용한 나노스케일 박막 코팅층에 대한 탄성특성 평가)

  • Kwak, Dong Ryul;Cho, Seung Bum;Park, Ik Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.475-480
    • /
    • 2015
  • Ultrasonic atomic force microscopy (Ultrasonic-AFM) has been used to investigate the elastic property of the ultra-thin coating layer in a thin-film system. The modified Hertzian theory was applied to predict the contact resonance frequency through accurate theoretical analysis of the dynamic characteristics of the cantilever. We coat 200 nm thick Aluminum and Titanium thin films on the substrate using the DC Magnetron sputtering method. The amplitude and phase of the contact resonance frequency of a vibrating cantilever varies in response to the local stiffness constant. Ultrasonic-AFM images were obtained using the variations in the elastic property of the materials. The morphology of the surface was clearly observed in the Ultrasonic-AFM images, but was barely visible in the topography. This research demonstrates that Ultrasonic-AFM is a promising technique for visualizing the distribution of local stiffness in the nano-scale thin coatings.

EFFECTS OF DIFFERENT OXIDIZED SURFACES OF IMPLANT ON OSSEOINTEGRATION; RESONANCE FREQUENCY AND HISTOMORPHOMETRIC ANALYSIS STUDY IN MINI-PIGS (다양한 양극산화막 처리방법이 임플란트 골유착에 미치는 영향)

  • Kwon, Kyung-Hwan;Min, Seung-Ki;Sung, Dae-Hyuk;Choi, Jae-Young;Choi, Seung-Lim;Cha, Su-Ryeon;Oh, Hee-Kyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.29 no.5
    • /
    • pp.383-393
    • /
    • 2007
  • The aim of the present study is to investigate the effect of anodized surface of osseointegration implants by using of resonance frequency analysis (RFA) and histomorphometric analysis. A total of 96 screw-shaped implants were devided into 4 groups. Seventy-two implants were prepared by electrochemical oxidation with 3 different ways; Group 1 (n=24) were prepared at galvanostatic mode in 0.25M sulfuric acid and phosphoric acid, Group 2 (n=24) were prepared at galvanostatic mode in calcium glycerophosphate and calcium acetate, and Group 3 (n=24) were prepared at galvanostatic mode in 0.25M sulfuric acid and phosphoric acid followed by Calcium metaphosphate(CMP) coating. Control group (n=24) were the RBM surfaced implants. The implants were placed in the mandibles of 12 mini pigs. Bone tissue responses were evaluated by resonance frequency analysis(RFA) and histomorphometric analysis that were undertaken at 2, 4 and 6weeks after implant placement. The following result were obtained. 1. Twenty-two of 96 implants (4 in control group, 5 in group 1, 7 in group 2, and 6 in group 3) were failed due to faliure of osseoitegration. The failure rate of osseointegration was 22.9%. 2. The mean values of RFA in control, group 2 and groups 3 showed the similar values, but there was no significant difference among groups. 3. Histomorphometric evaluation demonstrated significantly higher bone-to-implant contact ratio in group 2 at 3 and 4 weeks after implant placement than other groups (p<0.05), but there was no significant difference among groups at 6weeks after implant placement.

Effects of Flame Transfer Function on Modeling Results of Combustion Instabilities in a 3 Step Duct System (3단 덕트 시스템에서 화염전달함수가 연소불안정 모델링 결과에 미치는 영향)

  • Hong, Sumin;Kim, Daesik
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.119-125
    • /
    • 2020
  • In this paper, we used Helmholtz solver based on 3D finite element method to quantitatively analyze the effects of change of gain, time delay and time delay spread, which are the main variables of flame transfer function, on combustion instability in gas turbine combustor. The effects of the variable of flame transfer function on the frequency and growth rate, which are the main results of combustion instability, were analyzed by applying the conventional heat release fluctuation model and modified one considering the time spread. The analysis results showed that the change of gain and time delay in the same resonance mode affected the frequency of the given resonance modes as well as growth rate of the feedback instability, however, the effect of time delay spread was not relatively remarkable, compared with the dominant effect of time delay.

Design of Ultrasonic Tool Horn for Wire Wedge Bonding (와이어 본딩용 초음파 공구혼 설계에 관한 연구)

  • Lee, Bong-Gu;Oh, Myung-Seok;Ma, Jeong-Beom
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.717-722
    • /
    • 2013
  • In this study, we investigated the design of a wire wedge bonding ultrasonic tool horn using finite element method (FEM) simulations. The proposed method is based on an initial design estimate obtained by FEM analysis. An ultrasonic excitation causes various vibrations of a transducer horn and capillary. A simulated ultrasonic transducer horn and resonator are then built and characterized experimentally using a laser interferometer and electrical impedance analyzer. The vibration characteristics and resonance frequencies close to the exciting frequency are identified using ANSYS. FEM analysis is developed to predict the resonance frequency of the ultrasonic horn and use it in the optimal design of an ultrasonic horn mode shape.

Transient Characteristics of High Voltage Flyback Transformer (고전압 플라이백 변압기의 과도특성)

  • Lim, Cheol-Woo;Park, Nam-Ju;Chung, Se-Kyo
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.1-5
    • /
    • 2000
  • This paper deals with the modeling and analysis of the high voltage flyback transformer (HVFBT) often utilized in small-sized high voltage DC power supplies. The parasitic capacitance of th HVFBT with the large turns of the secondary winding causes the undesirable parasitic resonance in the transient state which produces the high current stress and limits the switching frequency of the converter. In order to analyze this phenomenon the equivalent circuit model including the parasitic capacitance is derived and the frequency characteristics are provided. The parasitic resonance in the switching states is also investigated based on this equivalent circuit model. The derived model and analysis is finally validated through the SPICE simulation and experiments.

  • PDF

Analysis of Dynamic Behavior of Piezoelectric Atomic Force Microscope Cantilever (압전형 AFM 외팔보의 동적거동 해석)

  • 하성규;박성균;김영호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.187-194
    • /
    • 2002
  • A seven-port impedance and admittance matrices of multilayered piezoelectric beam are derived for the analysis of piezoelectric AFM ( atomic force microscope) cantilever that is partially covered by the piezoelectric layer. The variational principle is used for deriving the extensional and flexural motional equations and the conjugate parameters. Overall impedance matrix of AFM cantilever can be obtained by combining two impedance matrices of the covered and the non-covered. she resonance and antiresonance frequencies and the effective electromechanical coupling factors are calculated using the derived matrices. The results and the three dimensional finite element solutions are compared with the experimental results in other publication.

Measurement and Analysis of Knock Using a Microphone Sensor in a S.I. Engine (전기점화기관에서 마이크로폰 센서를 이용한 노킹 측정 및 분석)

  • 황승환;이종화;임진수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.202-208
    • /
    • 1997
  • The knocking is one of major parameters to improve engine performance in a spark ignition engine. Many researches have been carried out to identify them using cylinder pressure, vibration signal and so on. In the present study, measurement and analysis was conducted to set up the criteria of knock occurrence by using microphone signal. Cylinder pressure was measured for the reference signal of knocking. It has been observed that resonance frequencies of pressure wave are nearly independent of engine operating conditions such as engine speed, air fuel ratio, load and octane number of fuel within to limited experimental conditions. SDBP(sum of different band-pass data) method using resonance frequency of knock was proposed for estimating knock intensity. SDBP method is superior to identify knock occurrence and its intensity in case of sound pressure measurement.

  • PDF

The Stator Analysis and Design of Ring Type Ultrasonic Motor (링형 초음파모터의 고정자 해석 및 설계)

  • Yoon, Shin-Yong;Baek, Soo-Hyun;Kim, Yong;Kim, Cherl-Jin;Kim, Hyun-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.10
    • /
    • pp.484-490
    • /
    • 2003
  • This paper describes with the stator analysis and design of a ring type ultrasonic motor. The design for piezoelectric ceramic and elastic body of stator were calculated by using the finite element method (FEM) that consider the resonance frequency, vibration mode and coupling efficiency. Namely, such results were acquired the calculation result of the piezoelectric ceramic thickness 0.5[mm], elastic body thickness 2.0[mm], resonance frequency 51.8[kHz], vibration mode 7 order and coupling efficient 12.5[%], the outer and inner diameter of vibrator 50[mm], 38[m]. On the basis of such result, the ring type ultrasonic motor was manufactured. Also for driving characteristics of ring type ultrasonic motor, 2-phase inverter was constructed. Then the propriety of this paper was established from comparision of the simulation and an experiment results of the ring type ultrasonic motor.

Development of Precision Moving Instrument by Using the Uni-morph type PZT Actuator (유니몰프 PZT 액츄에이터를 이용한 정밀 이송기구의 개발)

  • Kweon, Hyun-Kyu;Choi, Sung-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.1
    • /
    • pp.75-80
    • /
    • 2008
  • This paper presents a new precision moving instrument for the displacement and direction control using the uni-morph type PZT actuator. The instrument is composed of the two-body and a link. The body has the uni-morph type PZT actuator, which make the vibration. Movement of simple moving instrument is generally analyzed by the theory of center-of-gravity moment. However the analysis of the instrument in this paper is focused the resonance of instrument. Resonance of the body is originated a uni-morph type PZT actuator that is vibrated by voltage and frequency. The basic performances of one body instrument are analyzed by the FEM analysis. And experiments are also performed to confirm the linear movement of the instrument and direction control. it is proper a voltage control than a frequency control for the direction changing. And Moving velocity is 0.032m/s.

  • PDF

Model Updating of High-Speed Spindle (초고속 스핀들의 모델 개선법)

  • Park, Ki-Beom;Chung, Won-Jee;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • In the design of modem rotating machinery, it is often necessary to increase the performance of rotor-bearing system. Since a critical speed range influences the performance and safety of the whole system, it should be necessary to constrain the critical speed and thus resonance response in design process to result in large vibration. Consequently the minimization of resonance response amplitudes within the operation range of the rotor system becomes the most primary design objective. In this paper, based on the assumption that the external shape of rotating-shaft, bearing supporting positions and etc, the natural frequency analysis of spindle is performed by ANSYS $10.0^{(R)}$ Optimum design is conducted using the RBF model.