• Title/Summary/Keyword: Resolution of Image

Search Result 3,691, Processing Time 0.026 seconds

Probabilistic Anatomical Labeling of Brain Structures Using Statistical Probabilistic Anatomical Maps (확률 뇌 지도를 이용한 뇌 영역의 위치 정보 추출)

  • Kim, Jin-Su;Lee, Dong-Soo;Lee, Byung-Il;Lee, Jae-Sung;Shin, Hee-Won;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.6
    • /
    • pp.317-324
    • /
    • 2002
  • Purpose: The use of statistical parametric mapping (SPM) program has increased for the analysis of brain PET and SPECT images. Montreal Neurological Institute (MNI) coordinate is used in SPM program as a standard anatomical framework. While the most researchers look up Talairach atlas to report the localization of the activations detected in SPM program, there is significant disparity between MNI templates and Talairach atlas. That disparity between Talairach and MNI coordinates makes the interpretation of SPM result time consuming, subjective and inaccurate. The purpose of this study was to develop a program to provide objective anatomical information of each x-y-z position in ICBM coordinate. Materials and Methods: Program was designed to provide the anatomical information for the given x-y-z position in MNI coordinate based on the Statistical Probabilistic Anatomical Map (SPAM) images of ICBM. When x-y-z position was given to the program, names of the anatomical structures with non-zero probability and the probabilities that the given position belongs to the structures were tabulated. The program was coded using IDL and JAVA language for 4he easy transplantation to any operating system or platform. Utility of this program was shown by comparing the results of this program to those of SPM program. Preliminary validation study was peformed by applying this program to the analysis of PET brain activation study of human memory in which the anatomical information on the activated areas are previously known. Results: Real time retrieval of probabilistic information with 1 mm spatial resolution was archived using the programs. Validation study showed the relevance of this program: probability that the activated area for memory belonged to hippocampal formation was more than 80%. Conclusion: These programs will be useful for the result interpretation of the image analysis peformed on MNI coordinate, as done in SPM program.

The Evaluation of Usefulness of Wide Beam Reconstruction Method on Segmental Perfusion and Regional Wall Motion in Myocardial Perfusion SPECT (심근관류 SPECT의 분절별 관류 및 국소벽 운동에서 Wide Beam Reconstruction기법의 유용성 평가)

  • Seong, Yong-Joon;Kim, Tae-Yeob;Moon, Il-Sang;Cho, Seong-Wook;Woo, Jae-Ryong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.51-57
    • /
    • 2011
  • Purpose: The aim of this study is to identify clinical usefulness of Wide Beam Reconstruction (WBR) which is called Xpress.cardiac$^{TM}$ to confirm the agreement between segmental perfusion and regional wall motion in myocardium compared to conventional OSEM method. Materials and Methods: Subjects were separated two groups. First group was composed of 20 normal control group. Second group was composed of 10 patients (abnormal group) who had coronary artery disease. Subjects underwent myocardial perfusion SPECT ($^{201}Tl$ rest and $^{99m}Tc$-MIBI stress). Image acquisition and reconstruction were that rest stage was each step per 30, 15 seconds and stress stage was each step per 25, 13 seconds, OSEM and WBR methods were applied. Segmental perfusion and regional wall motion were applied 20-segment model of QPS, QGS algorithm in AutoQuant. Status of perfusion was composed of 5 point scoring system (0=normal, 1=mild, 2=moderate, 3=severe hypokinesia, 4=dyskinesia). Status of regional wall motion was also composed of 5 point scoring (0=normal, 1=mild, 2=moderate, 3=severe hypokinesia, 4=dyskinesia). We evaluated the agreement between conventional OSEM and WBR through automatic quantification value. Results: The agreement of rest segmental perfusion between conventional OSEM and WBR in normal patients was 99% (396/400, k=0.662, p<0.0001) and one of rest regional wall motion was 83.8% (335/400, k=0.283), the agreement of stress segmental perfusion was 95.8%(383/400, k=0.656), one of stress regional wall motion was 87.3% (349/400, k=0.390). The match rate of rest segmental perfusion in abnormal patients was 83% (166/200, k=0.605, p<0.0001) and one of rest regional wall motion was 55.5% (111/200, k=0.385), the agreement of stress segmental perfusion was 79.5% (159/200, k=0.682), one of stress regional wall motion was 63.5% (127/200, k=0.486). Conclusion: Compared to conventional OSEM, WBR method had a good agreement of segmental perfusion in myocardium in normal and abnormal groups. However regional wall motion showed meaningful low agreement. Although WBR offers high resolution and contrast ratio, it is not useful method for gated myocardial perfusion SPECT.

  • PDF

Land-Cover Change Detection of Western DMZ and Vicinity using Spectral Mixture Analysis of Landsat Imagery (선형분광혼합화소분석을 이용한 서부지역 DMZ의 토지피복 변화 탐지)

  • Kim, Sang-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.1
    • /
    • pp.158-167
    • /
    • 2006
  • The object of this study is to detect of land-cover change in western DMZ and vicinity. This was performed as a basic study to construct a decision support system for the conservation or a sustainable development of the DMZ and Vicinity near future. DMZ is an is 4km wide and 250km long and it's one of the most highly fortified boundaries in the world and also a unique thin green line. Environmentalists want to declare the DMZ as a natural reserve and a biodiversity zone, but nowadays through the strengthening of the inter-Korean economic cooperation, some developers are trying to construct a new-town or an industrial complex inside of the DMZ. This study investigates the current environmental conditions, especially deforestation of the western DMZ adopting remote sensing and GIS techniques. The Land-covers were identified through the linear spectvral mixture analysis(LSMA) which was used to handle the spectral mixture problem of low spatial resolution imagery of Landsat TM and ETM+ imagery. To analyze quantitative and spatial change of vegetation-cover in western DMZ, GIS overlay method was used. In LSMA, to develop high-quality fraction images, three endmembers of green vegetation(GV), soil, water were driven from pure features in the imagery. Through 15 years, from 1987 to 2002, forest of western DMZ and vicinity was devastated and changed to urban, farmland or barren land. Northern part of western DMZ and vicinity was more deforested than that of southern part. ($52.37km^2$ of North Korean forest and $39.04km^2$ of South Korean were change to other land-covers.) In case of North Korean part, forest changed to barren land and farmland and in South Korean part, forest changed to farmland and urban area. Especially, In North Korean part of DMZ and vicinity, $56.15km^2$ of farmland changed to barren land through 15 years, which showed the failure of the 'Darakbat' (terrace filed) project which is one of food increase projects in North Korea.

  • PDF

Effect of Noise on Density Differences of Tissue in Computed Tomography (컴퓨터 단층촬영의 조직간 밀도차이에 대한 노이즈 영향)

  • Yang, Won Seok;Son, Jung Min;Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.403-407
    • /
    • 2018
  • Currently, the highest cancer death rate in Korea is lung cancer, which is a typical cancer that is difficult to detect early. Low-dose chest CT is being used for early detection, which has a greater lung cancer diagnosis rate of about three times than regular chest x-ray images. However, low-dose chest CT not only significantly reduces image resolution but also has a weak signal and is sensitive to noise. Also, air filled lungs are low-density organs and the presence of noise can significantly affect early diagnosis of cancer. This study used Visual C++ to set a circle inside a large circle with a density of 2.0, with a density of 1.0, which is the density of water, in which five small circle of mathematics have different densities. Gaussian noise was generated by 1%, 2%, 3%, and 4% respectively to determine the effect of noise on the mean value, the standard deviation value, and the relative noise ratio(SNR). In areas where the density difference between the large and small circles was greatest in the event of 1 % noise, the SNR in the area with the greatest variation in noise was 4.669, and in areas with the lowest density difference, the SNR was 1.183. In addition, the SNR values can be seen to be high if the same results are obtained for both positive and negative densities. Quality was also clearly visible when the density difference was large, and if the noise level was increased, the SNR was reduced to significantly affect the noise. Low-density organs or organs in areas of similar density to cancers, will have significant noise effects, and the effects of density differences on the probability of noise will affect diagnosis.

Increase of Tc-99m RBC SPECT Sensitivity for Small Liver Hemangioma using Ordered Subset Expectation Maximization Technique (Tc-99m RBC SPECT에서 Ordered Subset Expectation Maximization 기법을 이용한 작은 간 혈관종 진단 예민도의 향상)

  • Jeon, Tae-Joo;Bong, Jung-Kyun;Kim, Hee-Joung;Kim, Myung-Jin;Lee, Jong-Doo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.6
    • /
    • pp.344-356
    • /
    • 2002
  • Purpose: RBC blood pool SPECT has been used to diagnose focal liver lesion such as hemangioma owing to its high specificity. However, low spatial resolution is a major limitation of this modality. Recently, ordered subset expectation maximization (OSEM) has been introduced to obtain tomographic images for clinical application. We compared this new modified iterative reconstruction method, OSEM with conventional filtered back projection (FBP) in imaging of liver hemangioma. Materials and Methods: Sixty four projection data were acquired using dual head gamma camera in 28 lesions of 24 patients with cavernous hemangioma of liver and these raw data were transferred to LINUX based personal computer. After the replacement of header file as interfile, OSEM was performed under various conditions of subsets (1,2,4,8,16, and 32) and iteration numbers (1,2,4,8, and 16) to obtain the best setting for liver imaging. The best condition for imaging in our investigation was considered to be 4 iterations and 16 subsets. After then, all the images were processed by both FBP and OSEM. Three experts reviewed these images without any information. Results: According to blind review of 28 lesions, OSEM images revealed at least same or better image quality than those of FBP in nearly all cases. Although there showed no significant difference in detection of large lesions more than 3 cm, 5 lesions with 1.5 to 3 cm in diameter were detected by OSEM only. However, both techniques failed to depict 4 cases of small lesions less than 1.5 cm. Conclusion: OSEM revealed better contrast and define in depiction of liver hemangioma as well as higher sensitivity in detection of small lesions. Furthermore this reconstruction method dose not require high performance computer system or long reconstruction time, therefore OSEM is supposed to be good method that can be applied to RBC blood pool SPECT for the diagnosis of liver hemangioma.

Development of a New Cardiac and Torso Phantom for Verifying the Accuracy of Myocardial Perfusion SPECT (심근관류 SPECT 검사의 정확도 검증을 위한 새로운 심장.흉부 팬텀의 개발)

  • Yamamoto, Tomoaki;Kim, Jung-Min;Lee, Ki-Sung;Takayama, Teruhiko;Kitahara, Tadashi
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.389-399
    • /
    • 2008
  • Corrections of attenuation, scatter and resolution are important in order to improve the accuracy of single photon emission computed tomography (SPECT) image reconstruction. Especially, the heart movement by respiration and beating cause the errors in the corrections. Myocardial phantom is used to verify the correction methods, but there are many different parts in the current phantoms in actual human body. Therefore the results using a phantom are often considered apart from the clinical data. We developed a new phantom that implements the human body structure around the thorax more faithfully. The new phantom has the small mediastinum which can simulate the structure in which the lung adjoins anterior, lateral and apex of myocardium. The container was made of acrylic and water-equivalent material was used for mediastinum. In addition, solidified polyurethane foam in epoxy resin was used for lung. Five different sizes of myocardium were developed for the quantitative gated SPECT (QGS). The septa of all different cardiac phantoms were designed so that they can be located at the same position. The proposed phantom was attached with liver and gallbladder, the adjustment was respectively possible for the height of them. The volumes of five cardiac ventricles were 150.0, 137.3, 83.1, 42.7 and 38.6ml respectively. The SPECT were performed for the new phantom, and the differences between the images were examined after the correction methods were applied. The three-dimensional tomography of myocardium was well reconstructed, and the subjective evaluations were done to show the difference among the various corrections. We developed the new cardiac and torso phantom, and the difference of various corrections was shown on SPECT images and QGS results.

  • PDF

3D Histology Using the Synchrotron Radiation Propagation Phase Contrast Cryo-microCT (방사광 전파위상대조 동결미세단층촬영법을 활용한 3차원 조직학)

  • Kim, Ju-Heon;Han, Sung-Mi;Song, Hyun-Ouk;Seo, Youn-Kyung;Moon, Young-Suk;Kim, Hong-Tae
    • Anatomy & Biological Anthropology
    • /
    • v.31 no.4
    • /
    • pp.133-142
    • /
    • 2018
  • 3D histology is a imaging system for the 3D structural information of cells or tissues. The synchrotron radiation propagation phase contrast micro-CT has been used in 3D imaging methods. However, the simple phase contrast micro-CT did not give sufficient micro-structural information when the specimen contains soft elements, as is the case with many biomedical tissue samples. The purpose of this study is to develop a new technique to enhance the phase contrast effect for soft tissue imaging. Experiments were performed at the imaging beam lines of Pohang Accelerator Laboratory (PAL). The biomedical tissue samples under frozen state was mounted on a computer-controlled precision stage and rotated in $0.18^{\circ}$ increments through $180^{\circ}$. An X-ray shadow of a specimen was converted into a visual image on the surface of a CdWO4 scintillator that was magnified using a microscopic objective lens(X5 or X20) before being captured with a digital CCD camera. 3-dimensional volume images of the specimen were obtained by applying a filtered back-projection algorithm to the projection images using a software package OCTOPUS. Surface reconstruction and volume segmentation and rendering were performed were performed using Amira software. In this study, We found that synchrotron phase contrast imaging of frozen tissue samples has higher contrast power for soft tissue than that of non-frozen samples. In conclusion, synchrotron radiation propagation phase contrast cryo-microCT imaging offers a promising tool for non-destructive high resolution 3D histology.

A Study on Damage factor Analysis of Slope Anchor based on 3D Numerical Model Combining UAS Image and Terrestrial LiDAR (UAS 영상 및 지상 LiDAR 조합한 3D 수치모형 기반 비탈면 앵커의 손상인자 분석에 관한 연구)

  • Lee, Chul-Hee;Lee, Jong-Hyun;Kim, Dal-Joo;Kang, Joon-Oh;Kwon, Young-Hun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.5-24
    • /
    • 2022
  • The current performance evaluation of slope anchors qualitatively determines the physical bonding between the anchor head and ground as well as cracks or breakage of the anchor head. However, such performance evaluation does not measure these primary factors quantitatively. Therefore, the time-dependent management of the anchors is almost impossible. This study is an evaluation of the 3D numerical model by SfM which combines UAS images with terrestrial LiDAR to collect numerical data on the damage factors. It also utilizes the data for the quantitative maintenance of the anchor system once it is installed on slopes. The UAS 3D model, which often shows relatively low precision in the z-coordinate for vertical objects such as slopes, is combined with terrestrial LiDAR scan data to improve the accuracy of the z-coordinate measurement. After validating the system, a field test is conducted with ten anchors installed on a slope with arbitrarily damaged heads. The damages (such as cracks, breakages, and rotational displacements) are detected and numerically evaluated through the orthogonal projection of the measurement system. The results show that the introduced system at the resolution of 8K can detect cracks less than 0.3 mm in any aperture with an error range of 0.05 mm. Also, the system can successfully detect the volume of the damaged part, showing that the maximum damage area of the anchor head was within 3% of the original design guideline. Originally, the ground adhesion to the anchor head, where the z-coordinate is highly relevant, was almost impossible to measure with the UAS 3D numerical model alone because of its blind spots. However, by applying the combined system, elevation differences between the anchor bottom and the irregular ground surface was identified so that the average value at 20 various locations was calculated for the ground adhesion. Additionally, rotation angle and displacement of the anchor head less than 1" were detected. From the observations, the validity of the 3D numerical model can obtain quantitative data on anchor damage. Such data collection can potentially create a database that could be used as a fundamental resource for quantitative anchor damage evaluation in the future.

Diagnostic Accuracy of Rest T1-201/Stress Tc-99m-MIBI Myocardial SPECT in the Diagnosis of Coronary Artery Disease (휴식 T1-201/부하 Tc-99m MIBI 심근 SPECT의 관상동맥질환 진단 정확성)

  • Yeo, Jeong-Seok;Lee, Dong-Soo;Kang, Keon-Wook;Sohn, Dae-Won;Oh, Byung-Hee;Lee, Myung-Mook;Chung, June-Key;Park, Young-Bae;Lee, Myung-Chul;Seo, Jung-Don;Lee, Young-Woo;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.1
    • /
    • pp.112-117
    • /
    • 1996
  • Objective: Standard stress/rest Tc-99m MIBI and T1-201 myocardial perfusion study have some limitations such as stress/rest image overlap for Tc-99m-MIBI, low energy for T1-201 and long period of study time for two separate studies. Separate acquisition rest T1-201/stress Tc-99m MIBI dual isotope study is a potentially efficient myocardial perfusion imaging protocol that combines the high resolution of Tc-99m for stress perfusion assessment and T1-201 for viability assessment. This study assessed the usefulness and diagnostic accuracy for this new approach. Methods: We tried to evaluate sensitivity and specificity of dual isotope separate acquisition protocol in 67 patients. Immediately after resting T1-201 SPECT data was acquired, dipyridamole stress Tc-99m MIBI myocardial perfusion study was performed. Visual analysis was carried out qualitatively with 0 to 3 scoring system for 17 segments of left ventricle in the reconstructed horizontal long axis and short axis slices. Results: Total study was completed within 3 hours. In angiographic correlation, dual isotope SPECT demonstrated high sensitivity(85%) and in a small group of patients, high specificity was also observed (100%). Conclusion: Combined thallium-201/stress Tc-99m MIBI SPECT displayed similiar diagnostic accuracy to protocol using stress/rest Tc-99m MIBI SPECT. This protocol was completed in shorter period than the previous protocols and therefore enhance laboratory throughput and patients convenience.

  • PDF

Assembly and Testing of a Visible and Near-infrared Spectrometer with a Shack-Hartmann Wavefront Sensor (샤크-하트만 센서를 이용한 가시광 및 근적외선 분광기 조립 및 평가)

  • Hwang, Sung Lyoung;Lee, Jun Ho;Jeong, Do Hwan;Hong, Jin Suk;Kim, Young Soo;Kim, Yeon Soo;Kim, Hyun Sook
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.3
    • /
    • pp.108-115
    • /
    • 2017
  • We report the assembly procedure and performance evaluation of a visible and near-infrared spectrometer in the wavelength region of 400-900 nm, which is later to be combined with fore-optics (a telescope) to form a f/2.5 imaging spectrometer with a field of view of ${\pm}7.68^{\circ}$. The detector at the final image plane is a $640{\times}480$ charge-coupled device with a $24{\mu}m$ pixel size. The spectrometer is in an Offner relay configuration consisting of two concentric, spherical mirrors, the secondary of which is replaced by a convex grating mirror. A double-pass test method with an interferometer is often applied in the assembly process of precision optics, but was excluded from our study due to a large residual wavefront error (WFE) in optical design of 210 nm ($0.35{\lambda}$ at 600 nm) root-mean-square (RMS). This results in a single-path test method with a Shack-Hartmann sensor. The final assembly was tested to have a RMS WFE increase of less than 90 nm over the entire field of view, a keystone of 0.08 pixels, a smile of 1.13 pixels and a spectral resolution of 4.32 nm. During the procedure, we confirmed the validity of using a Shack-Hartmann wavefront sensor to monitor alignment in the assembly of an Offner-like spectrometer.