• 제목/요약/키워드: Resistive SFCL

검색결과 120건 처리시간 0.021초

Manufacture and Test of Small-scale Superconducting Fault Current Limiter by Using the Bifilar Winding of Coated Conductor

  • Yang, Seong-Eun;Ahn, Min-Cheol;Park, Dong-Keun;Jang, Dae-Hee;Ko, Tae-Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제7권4호
    • /
    • pp.20-23
    • /
    • 2005
  • The Resistive Type High Temperature Superconducting Fault Current Limiter (SFCL) has been developed in many countries. Until now, materials of the resistive SFCL were Bi2212 bulk and YBCO thin film. Although YBCO coated conductor (CC) has many advantages such as high n-value and critical current for applying resistive SFCL, the resistive SFCL using CC doesn't have developed yet. The bifilar winding type SFCL was manufactured and tested rated on 30V/80A. In normal state, the SFCL using pancake type bifilar winding had very low impedance. When a fault occurred, the SFCL limited the fault current efficiently. Through these results of experiment, large-scale SFCL using CC should be developed in the future.

EMTDC Modeling Method of Resistive type Superconducting Fault Current Limiter

  • Taejeon Huh;Lee, Jaedeuk;Park, Minwon;Yu, In-Keun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권1호
    • /
    • pp.60-65
    • /
    • 2003
  • An effective modeling and simulation scheme of a resistive type Superconducting fault Current Limiter (SFCL) using PSCAD/EMTDC is proposed in this paper. In case of High Temperature Superconducting (HTS) resistive type fault current limiter current limiting is implemented by the ultra-fast transition characteristics from the superconducting (non-resistive) state to the normal (resistive) state by overstepping the critical current density. The states can generally be divided into three sub-states: the superconducting state the quench state and the recovery state respectively. In order to provide alternative application schemes of a resistive type SFCL, an effective modeling and simulation method of the SFCL is necessary. For that purpose, in this study, an actual experiment based component model is developed and applied for the simulation of the real resistive type SFCL using PSCAD/EMTDC. The proposed simulation scheme can be implemented to the grid system readily under various system conditions including sort of faults and the system capacity as well. The simulation results demonstrate the effectiveness of the proposed model and simulation scheme.

Simultaneous Quench Characteristic of Resistive Superconducting Fault Current Limiting Modules by using BSCCO Tape

  • Yang Seong-Eun;Ahn Min-Cheol;Park Dong-Keun;Youn Il-Goo;Jang Dae-Hee;Ko Tae-Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권2호
    • /
    • pp.43-45
    • /
    • 2006
  • Recently, the resistive Fault Current Limiter (SFCL) made with Coated Conductor (CC) has been researched with an advanced capability in CC. Current limiting elements must be connected in series in order to fabricate the resistive SFCL having large capacity. By the way, unless the applied voltage in the SFCL is distributed to the elements when the fault occurred, those elements will be critically damaged. Thus simultaneous quench of the elements is an important factor to design the resistive SFCL. In this paper, simultaneous quench characteristics of current limiting module by using BSCCO 2223 were researched before manufacturing the resistive SFCL by using CC. At the first fault stage, the elements generated the resistance at the same time. However, the unequal voltage is applied to the each element in process of time. The method is suggested to solve the problem of the unequal distribution. These experimental results will play an important part in developing for the resistive SFCL by using CC.

Simulation for current limiting characteristics of the resistive and inductive SFCL with line-to-ground fault

  • Choi, Hyo-Sang;Hwang, Si-Dole;Kim, Sang-Joon;Han, Byoung-Sung
    • Progress in Superconductivity
    • /
    • 제1권1호
    • /
    • pp.73-80
    • /
    • 1999
  • We investigated the current limiting characteristics of resistive and inductive SFCLs with 100 $\Omega$ of impedance for line-to-ground faults in the 154 kV transmission system. The fault simulation at the phase angles $0^{\circ}$, $^45{\circ}$, and $90^{\circ}$ showed that the resistive SFCL limits the fault current less than 17 kA without any DC component after one half cycle from the instant of the fault. On the other hand, the inductive SFCL suppresses the current below 14 kA, but with 5 kA of DC component which decreases to zero in 5 cycles. We concluded that the inductive SFCL has higher performance in current limiting effect, but the resistive SFCL was better from the viewpoint of less DC components.

  • PDF

A Study on Transient Numerical Simulation on Heat Transfer Characteristics in the Resistive SFCL

  • Kim Chul-Ho;Lee Kee-Man;Ryu Kyung-Woo
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제7권4호
    • /
    • pp.14-19
    • /
    • 2005
  • A transient numerical simulation was conducted to have variation of temperature on an element of resistive Superconducting Fault Current Limiter (SFCL) under quench condition. It is very important engineering information for an optimum design of cryogenic system for cooling of a resistive SFCL element. A bifilar coil for resistive SFCL for 10 MVA system was incorporated as a model in this numerical study. From the numerical simulation result, it was found that the averaged temperature on the shunt and Bi-2212 element at 500 kW, 100 ms was 711.1 K and 198.4 K respectively. The temperature variation with the change of the hot-spot size and time is also obtained. The maximum temperature was continuously increased in all cases until the hot-spot stops at 100ms and it was going down after then. Such as, the details of temperature distribution on the SFCL element obtained from this numerical study and it should be very valuable information on the decision of the cooling capacity of cryogenic system.

저항형과 유도형 한류기의 전류제한특성에 대한 EMTDC 해석 (EMTDC simulation for current limiting characteristics of the resistive and inductive SFCL)

  • 최효상;황시돌;현옥배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.255-258
    • /
    • 1999
  • We investigated the current limiting characteristics of resistive and inductive SFCLs with 100 $\Omega$ of quench impedance for a single line-to-ground fault. which accounts for about 70% of the total power line faults, in the 154 kV transmission system. The fault simulation at the phase angles 0$^{\circ}$, 45$^{\circ}$, and 90$^{\circ}$ showed that the resistive SFCL limited the fault current less than 15 kA without any DC component after one half cycle from the instant of the fault. On the other hand, the inductive SFCL suppressed the current below 12 KA, but with 3 kA of DC component which decreased to zero in 5 cycles. We concluded that the inductive SFCL had higher performance in current limiting but the resistive SFCL was better from the view point of DC components.

  • PDF

3상 단락사고에 대한 저항형과 유도형 한류기의 동작특성 (Operating properties of the resistive and inductive SFCL with the three-phase fault)

  • 최효상;현옥배;김상준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.209-212
    • /
    • 1999
  • We studied the operating properties of resistive and inductive SFCLS with 100 $\Omega$ of quench impedance for a three-phase-fault in the 154 kV transmission system. The fault simulation at the phase angles 0$^{\circ}$ , 45$^{\circ}$ , and 90$^{\circ}$ showed that the resistive SFCL limited the fault current less than 16 kA without any DC component after one half cycle from the instant of the fault. On the other hand, the inductive SFCL suppressed the current below 11 kA, but with 3-4 kA of DC component which decreased to zero in 5 cycles. We concluded that the inductive SFCL had higher performance in current limiting but the resistive SFCL was better from the view point of DC components.

  • PDF

1선 지락사고에 대한 배전급 저항형 초전도 한류기의 전류제한특성 (Current Limiting Characteristics of a Resistive SFCL for a Single-line-to-ground Fault in the 22.9 kV System)

  • 최효상;황시돌;현옥배
    • 한국전기전자재료학회논문지
    • /
    • 제14권6호
    • /
    • pp.505-510
    • /
    • 2001
  • We simulated the current limiting characteristics of a resistive superconducting fault current limiter (SFCL) for a single line-to-ground fault in the 22.9 kV system. The transient current during the fault increased to 6.33 kA, 5.80 kA and 3.71 kA without SFCL at the fault angles 0$^{\circ}$, 45$^{\circ}$ and 90$^{\circ}$, respectively, a resistive SFCL limited effectively the fault current to 2.27 kA in a half cycle without any DC components. The maximum quench resistance of an SFCL, 16Ω was suggested to be appropriate to limit the fault current in the 22.9 kV distribution system, considering the operating cooperation of a protective relay and the current limiting performance of an SFCL.

  • PDF

전압증가 시 재폐로 동작에 따른 변압기형 초전도 한류기의 특성 분석 (Characteristics on the Transformer-Type SFCL According to Reclosing Operation the Voltage Increase)

  • 최수근;최효상
    • 전기학회논문지P
    • /
    • 제59권4호
    • /
    • pp.477-480
    • /
    • 2010
  • Fault current in power system is expected to increase by demand of power capacity. Therefore, when the fault occurred, fault current was increased in the power system. Many studies have been progressed to limit the fault current. Superconducting fault current limiter (SFCL) is one of them which has been studied in worldwide. In this paper, we will analyze characteristics of a transformer-type SFCL by reclosing operation when the voltage increases. Twice opening times in the reclosing of circuit breaker were set as the 0.5 and 15 seconds, respectively. Turn's number of primary and secondary coils set 4:2 and we increased voltages from 120V to 280V for each experiment. By the current waveform, maximum fault current in second and third cycles was lowered when the voltage was increased. In the recovery waveform, recovery time was increased as the voltage was increased. The reason was that power burden of the SFCL increased when consumption power was increased, so the time to get back to SFCL took longer. We compared the characteristics of a resistive-type and transformer-type SFCL. As a result, we found that the fault current of a transformer-type was lower than resistive-type and recovery time of the SFCL was shorter. Consequently, transformer-type SFCL was more profitable for limitation of fault current and recovery time under the same condition for reclosing operation.

배전급 저항형 초전도 한류기의 전류제한특성에 대한 EMTDC 시뮬레이션 (Simulation for current limiting characteristics of a resistive SFCL in the 22.9 kV distribution system)

  • Choi, Hyo-Sang;Hyun, Ok-Bae;Hwang, Si-Dole;Kim, Sang-Joon
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2000년도 High Temperature Superconductivity Vol.X
    • /
    • pp.268-271
    • /
    • 2000
  • We simulated the current limiting characteristics of a resistive SFCL with 16 ${\Omega}$ of resistance for a single line-to-ground fault in the 22.9 kV system. The transient current during the fault increased up to 6.33 kA, 5.80 kA and 3.71 kA without SFCL at the fault angles of 0${\circ}$,45${\circ}$ and 90${\circ}$, respectively. An resistive SFCL limited the fault current to 2.27 kA in a half cycle. The quench resistance of 16 ${\Omega}$ was suggested to be appropriate to limit the fault current in the 22.9 kV distribution system.

  • PDF