• 제목/요약/키워드: Resistance-capacitance

검색결과 460건 처리시간 0.028초

Interconnected meso/microporous carbon derived from pumpkin seeds as an efficient electrode material for supercapacitors

  • Gopiraman, Mayakrishnan;Saravanamoorthy, Somasundaram;Kim, Seung-Hyun;Chung, Ill-Min
    • Carbon letters
    • /
    • 제24권
    • /
    • pp.73-81
    • /
    • 2017
  • Interconnected meso/microporous activated carbons were prepared from pumpkin seeds using a simple chemical activation method. The porous carbon materials were prepared at different temperatures (PS-600, PS-700, PS-800, and PS-900) and demonstrated huge surface areas ($645-2029m^2g^{-1}$) with excellent pore volumes ($0.27-1.30cm^3g^{-1}$). The well-condensed graphitic structure of the prepared activated carbon materials was confirmed by Raman and X-ray diffraction analyses. The presence of heteroatoms (O and N) in the carbon materials was confirmed by X-ray photoemission spectroscopy. High resolution transmission electron microscopic images and selected area diffraction patters further revealed the porous structure and amorphous nature of the prepared electrode materials. The resultant porous carbons (PS-600, PS-700, PS-800, and PS-900) were utilized as electrode material for supercapacitors. To our delight, the PS-900 demonstrated a maximum specific capacitance (Cs) of $303F\;g^{-1}$ in 1.0 M $H_2SO_4 $ at a scan rate of 5 mV. The electrochemical impedance spectra confirmed the poor electrical resistance of the electrode materials. Moreover, the stability of the PS-900 was found to be excellent (no significant change in the Cs even after 6000 cycles).

Design of a 94-GHz Single Balanced Mixer Using Planar Schottky Diodes with a Nano-Dot Structure on a GaAs Substrate

  • Uhm, Won-Young;Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of information and communication convergence engineering
    • /
    • 제14권1호
    • /
    • pp.35-39
    • /
    • 2016
  • In this paper, we develop a 94-GHz single balanced mixer with low conversion loss using planar Schottky diodes on a GaAs substrate. The GaAs Schottky diode has a nanoscale anode with a T-shaped disk that can yield high cutoff frequency characteristics. The fabricated Schottky diode with an anode diameter of 500 nm has a series resistance of 21 Ω, an ideality factor of 1.32, a junction capacitance of 8.03 fF, and a cutoff frequency of 944 GHz. Based on this technology, a 94-GHz single balanced mixer was constructed. The fabricated mixer shows an average conversion loss of -7.58 dB at an RF frequency of 92.5 GHz to 95 GHz and an IF frequency of 500 MHz with an LO power of 7 dBm. The RF-to-LO isolation characteristics were greater than -32 dB. These values are considered to be attributed to superior Schottky diode characteristics.

소형화된 헤어핀 공진기를 이용한 X-대역 발진기의 설계 및 구현 (Design and Implementation of X-Band Oscillator Using Compact Hairpin Resonator)

  • 김기래
    • 한국전자통신학회논문지
    • /
    • 제9권10호
    • /
    • pp.1131-1137
    • /
    • 2014
  • 본 논문에서는 X-대역 레이더 시스템의 국부 발진기용으로 사용가능한 발진기를 소형화된 헤어핀 공진기를 이용하여 설계한다. 제안하는 헤어핀 공진기는 기존의 헤어핀 구조에서 선로 끝단에 커패시턴스를 증가시켜 소형화하였다. 이 구조는 기존 구조에 비해 크기를 40% 정도로 소형화할 수 있고 위상잡음 특성도 개선하였다. 제안한 헤어핀 공진기를 이용한 발진기는 측정결과 발진주파수는 9.05 GHz, 출력전력이 2.47 dBm, 위상잡음 특성이 -101.4 dBc/Hz이었다. 본 논문에서 제작된 발진기는 소형화 설계가 가능하고 평면형 구조이므로 MMIC 설계에 유리한 장점이 있다.

마이크로 홀의 EDM 가공 시 생산성 향상을 위한 가공공정의 최적화 (Process Optimization for Productivity Improvement during EDM machining of a micro-hole)

  • 권원태;김영추
    • 한국생산제조학회지
    • /
    • 제21권4호
    • /
    • pp.556-562
    • /
    • 2012
  • Micro electrical discharge machining (${\mu}EDM$) has been used for non-conventional material removal. One drawback of ${\mu}EDM$ is low productivity. In this study, we tried to find the optimal machining conditions to manufacture the micro hole with an optimal machining time without loss of accuracy. Taguchi method was used to figure out the relation between machining parameters and characteristics of the process. It was found that the electrode wear, the entrance and exit clearance gave a significant effect on the diameter of the micro hole when the diameter of the electrode was identical. Grey relational analysis was used to determine the optimal machining condition for minimum machining time without loss of accuracy. The obtained optimal machining condition was the input voltage of 80V, the capacitance of 680pF, the resistance of $500{\Omega}$, the feed rate of $1.5{\mu}m$/s and the spindle speed of 2900rpm. The machining time was reduced to 48% without loss of accuracy under the optimal machining condition.

참조패턴 기반의 2차원 변위 측정 방법론 (Measuring Methods for Two-dimensional Position Referring to the Target Pattern)

  • 정광석;이상헌;박성준
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.77-84
    • /
    • 2013
  • In this paper, we review two-dimensional measuring methods referring to target patterns. The patterns consist of two linearly-repeated patterns or is designed repeatedly in two-dimension. The repeated properties are reflectivity, refractivity, air-gapping distance, capacitance, magnetic reluctance, electrical resistance and sloping gradient, etc. However, the optical methods are generally used for high speed processing and density, and their encoding principles are treated here. In case of two-dimensional pattern, as there is not inherently error between single units encoding the pattern except for the metrology frame errors, the end-effector position of an object accompanying the pattern can be measured with respect of the global frame without via error. Therefore, it is regarded as a substitute for laser interferometer with severe environmental constraints and has been applied to the high-accurate planar actuator.

Inductive Micro Displacement Detecting System with High Sensitivity and Low Linearity Error

  • Park, Dong-June;Park, In-Mook;Kim, Soo-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권3호
    • /
    • pp.54-60
    • /
    • 2001
  • A newly designed inductive micro displacement detecting system is presented. The proposed inductive system consists of driving coils, position-detecting coils, cores, and closed-loop formed magnetic blocks. The cores and magnetic blocks are made of Mn-Zn ferrite. When AC sine wave is applied to the driving coils, the time derivative flux is generated within the system, and then induced voltages arise in the position-detecting coils according to the core\`s position. Putting the cores to be moved proportionally to the input displacement, the induced voltage is proportional to input displacement. The parameters that affect the system characteristics are turn ratio, air-gap size, excitation frequency, overlap area, load resistance, capacitance effect, and so forth. Based on the experimental results, the system parameters are selected in such a way as to have high sensitivity ad stable responses. The sensitivity of the proposed inductive displacement-detecting system is greater than 2800mV.V-1mm-1 and the linearity error is below $\pm$0.10% in the range of $\pm$200㎛.

  • PDF

복합 코발트 실리사이드 공정에 따른 게이트 산화막의 특성변화 (Characteristics of Gate Oxides with Cobalt Silicide Process)

  • 송오성;정성희;이상돈;이기영;류지호
    • 한국재료학회지
    • /
    • 제13권11호
    • /
    • pp.711-716
    • /
    • 2003
  • Gate length, height, and silicide thickness have all been shrinking linearly as device density has progressively increased over the years. We investigated the effect of the cobalt diffusion during the silicide formation process on the 60$\AA$-thick gate oxide lying underneath the Ti/Co and Co/Ti bilayers. We prepared four different cobalt silicides, which have similar sheet resistance, made from the film structure of Co/Ti(interlayer), and Ti(capping layer)/Co, and peformed the current-voltage, time-to-break down, and capacitance-voltage measurements. Our result revealed that the cobalt silicide process without the Ti capping layer allowed cobalt atoms to diffuse into the upper interface of gate oxides. We propose that 100$\AA$-thick titanium interlayer may lessen the diffusion of cobalt to gate oxides in 1500-$\AA$ height polysilicon gates.

EMTP를 이용한 매설지선의 규약접지임피던스 해석 (Analysis for the conventional impedance of counterpoise using EMTP)

  • 김종호;조정현;백영환;이강수;이복희
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 추계학술대회 논문집
    • /
    • pp.47-50
    • /
    • 2009
  • When the lightning currents flow through the ground electrode, the grounding system should be evaluated by the grounding impedance rather than the ground resistance because a grounding system shows the transient impedance characteristic by the inductance of the ground electrode and the capacitance of the soil. The ratio of the peak values of electric potential and currents is the conventional impedance that shows the transient characteristic about impulse currents of the grounding system in a roundabout way. The grounding system having low conventional impedance is a fine grounding system with low electric potential when the lightning currents flow. In this paper the conventional impedance of the counterpoise is calculated by using the distributed parameter circuit model and embodied the distributed parameter circuit model by using the EMTP program The adequacy of the distributed parameter model is examined by comparing the simulated and the measured results. The conventional impedance of the counterpoise is analyzed for first short stroke and subsequent short stroke currents.

  • PDF

A Load Identification Method for ICPT System Utilizing Harmonics

  • Xia, Chen-Yang;Zhu, Wen-Ting;Ma, Nian;Jia, Ren-Hai;Yu, Qiang
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2178-2186
    • /
    • 2018
  • Online identification of load parameters is the premise of establishing a stable and highly-efficient ICPT (Inductive Coupled Power Transfer) system. However, compared with pure resistive load, precise identification of composite load, such as resistor-inductance load and resistance-capacitance load, is more difficult. This paper proposes a method for detecting the composite load parameters of ICPT system utilizing harmonics. In this system, the fundamental and harmonic wave channel are connected to the high frequency inverter jointly. The load parameter values can be obtained by setting the load equation based on the induced voltage of secondary-side network, the fundamental wave current, as well as the third harmonic current effective value received by the secondary-side current via Fourier decomposition. This method can achieve precise identification of all kinds of load types without interfering the normal energy transmission and it can not only increase the output power, but also obtain higher efficiency compared with the fundamental wave channel alone. The experimental results with the full-bridge LCCL-S type voltage-fed ICPT system have shown that this method is accurate and reliable.

Nonvolatile Memory and Photovoltaic Devices Using Nanoparticles

  • Kim, Eun Kyu;Lee, Dong Uk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.79-79
    • /
    • 2013
  • Quantum-structures with nanoparticles have been attractive for various electronic and photonic devices [1,2]. In recent, nonvolatile memories such as nano-floating gate memory (NFGM) and resistance random access memory (ReRAM) have been studied using silicides, metals, and metal oxides nanoparticles [3,4]. In this study, we fabricated nonvolatile memories with silicides (WSi2, Ti2Si, V2Si) and metal-oxide (Cu2O, Fe2O3, ZnO, SnO2, In2O3 and etc.) nanoparticles embedded in polyimide matrix, and photovoltaic device also with SiC nanoparticles. The capacitance-voltageand current-voltage data showed a threshold voltage shift as a function of write/erase voltage, which implies the carrier charging and discharging into the metal-oxide nanoparticles. We have investigated also the electrical properties of ReRAM consisted with the nanoparticles embedded in ZnO, SiO2, polyimide layer on the monolayered graphene. We will discuss what the current bistability of the nanoparticle ReRAM with monolayered graphene, which occurred as a result of fully functional operation of the nonvolatile memory device. A photovoltaic device structure with nanoparticles was fabricated and its optical properties were also studied by photoluminescence and UV-Vis absorption measurements. We will discuss a feasibility of nanoparticles to application of nonvolatile memories and photovoltaic devices.

  • PDF