• Title/Summary/Keyword: Resistance Temperature Coefficient

Search Result 537, Processing Time 0.028 seconds

Primary Resistance Compensation of Linear Induction Motor Using Thermocouple (Thermocouple을 이용한 선형 유도전동기의 1차측 저항 보상)

  • Kim, Kyung-Min;Park, Seung-Chan
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.742-747
    • /
    • 2006
  • This paper describes online stator-resistance estimation of a linear induction motor(LIM) with cage-type secondary using direct thrust control(DTC), where the resistance value is derived from stator-winding temperature estimation using thermocouple. In this paper, corrected stator resistance has an error in actuality measurement resistance. So compensation coefficient $\kappa$ which is decided through comparison and verifying several times relation of calculated resistance and measured motor line-line resistance. The stator-winding temperature information can also be used for monitoring, protection, and fault-tolerant control of the machine. Also, this paper reports the LIM's responses of the flux measured by the proposed stator resistance compensation algorithm.

  • PDF

Slip Resistance of Contaminants on the Floor for Variation of Viscosity (점도변화에 따른 바닥 오염물질의 미끄러짐 저항 특성)

  • Park, Jae-Suk;Oh, Whan-Sup
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.185-189
    • /
    • 2012
  • While there is no standards on slip risk for contaminants on surface, glycerol is described in standard contaminant for measuring coefficient of friction(COF) and slip resistance such as ISO 13287. But that is just used to measure the slip resistance of surface materials and shoes not to evaluate the contaminant materials. Therefore the objective of this study was to find out the relationship between standard contaminant and the contaminants used usually at the workplaces. For this, some measurement criteria were acquired from the analysis based on biomechanics and kinetics of human gait during slips. The slip resistance according to viscosity of the contaminants was measured applying the criteria and slip probability was determined by the gait analysis. Some factors which should be considered when measuring the slip resistance were identified. The velocity, acceleration, contact time and contact pressure should be 1 m/sec, 10 $m/sec^2$, 350 kPa and less than 0.5sec respectively. The variation of viscosity according to temperature for working oils was different from that of standard contaminant. The static coefficient of friction (SCOF) of working oils was almost 0.5 times as large as the SCOF of standard contaminant. So it was assumed to be difficult to compare the contaminants at the workplaces with the glycerol as a standard contaminant for estimating the slip risk.

Effect of YAG on the Fracture Toughness and Electrical Conductivity of $\beta-SIC-ZrB_{2}$ Composites ($\beta-SIC-ZrB_{2}$복합체의 파괴인성과 전기전도도에 미치는 YAG의 영향)

  • Shin, Yong-Deok;Ju, Jin-Young;Yoon, Se-Won;Hwang, Chul;Park, Mi-Lim
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.839-842
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta$-SiC-ZrB$_2$ electroconductive ceramic composites were investigated as function of the liquid forming additives of $Al_2$O$_3$+Y$_2$O$_3$. Phase analysis of composites by XRD revelled $\alpha$ -SiC(6H), ZrB$_2$, and YAG(Al$_{5}$ Y$_3$O$_{12}$ ). Owing to crack deflection, crack bridging, phase transition and YAG of fracture toughness mechanism, the fracture toughness showed the highest value of 6.3MPa.m$^{1}$2/ for composites added with 24wt% $Al_2$O$_3$+Y$_2$O$_3$additives at room temperature. The resistance temperature coefficient respectively showed the value of 2.46$\times$10$^{-3}$ , 2.47$\times$10$^{-3}$ , 2.52$\times$ 10$^{-3}$ $^{\circ}C$ for composite added with 16, 20, 24wt% A1$_2$O$_3$+Y$_2$O$_3$additives. The electircal resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $25^{\circ}C$ to 90$0^{\circ}C$.

  • PDF

A Study on the MDTF for Uncooled Infrared Ray Thermal Image Sensors with High Thermal Coefficient of Resistance (높은 열저항 계수를 가지는 비냉각형 적외선 열영상 이미지 센서용 MDTF(Metal-dielectric Thin Film)에 관한 연구)

  • Jung, Eun-Sik;Jeong, Se-Jin;Kang, Ey-Goo;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.366-371
    • /
    • 2012
  • In this paper, fabricated by MEMS uncooled micro-bolometer detector for the study in the infrared sensitivity enhancement. Absorption layer SiOx-Metal series MDTF (metal-dielectric thin film) by high absorption rate and has a high thermal coefficient of resistance, low noise characteristics were implemented. Then MDTF were made in a vacuum deposition method. And MDTF for the analysis of the physical properties of silicon wafers were fabricated, TCR (temperature coefficient of resistance) value was made in order to measure the glass wafer and FT-IR (Fourier Transform Infrared spectroscopy) values were made in order to measure the germanium window. The analyzed results of MDTF -3 [%/K] has more characteristics of the TCR. And 8~12 um wavelength region close to 70% in the absorption characteristic.

Effect of the Temperature on Resistivity of Carbon Black-Polyethylene Composites Below and Above Percolation Threshold (Carbon Black-Polyethylene복합재료의 Percolation Threshold 전후 저항율에 미치는 온도의 영향)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.644-648
    • /
    • 2009
  • Temperature dependency of resistivity of the carbon black-polyethylene composites below and above percolation threshold is studied based on the electrical conduction mechanism. Temperature coefficient of resistance of the composites below percolation threshold changed from minus to plus, increasing volume fraction of carbon black; this trend decreased with increasing volume fraction of carbon black. The temperature dependence of resistivity of the composites below percolation threshold can be explained with a tunneling conduction model by incorporating the effect of thermal expansion of the composites into a tunneling gap. Temperature coefficient of resistance of the composites above percolation threshold was positive and its absolute value increased with increasing volume fraction of carbon black. By assuming that the electrical conduction through percolating paths is a thermally activated process and by incorporating the effect of thermal expansion into the volume fraction of carbon black, the temperature dependency of the resistivity above percolation threshold has been well explained without violating the universal law of conductivity. The apparent activation energy is estimated to be 0.14 eV.

Characteristics of CrOx Thin-films for High Precision Resistors (고정밀저항용 크롬산화박막의 특성)

  • Seo, Jeong-Hwan;Noh, Sang-Soo;Lee, Eung-Ahn;Kim, Kwang-ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.3
    • /
    • pp.253-258
    • /
    • 2005
  • This paper presents characteristics of CrOx thin-film, which were deposited on $Al_2$O$_3$ wafer by DC reactive magnetron sputtering in an argon-oxide atmosphere for high temperature applications. The present paper deals with a study of the technological characteristics of thin film resistors to provide a control in obtaining temperature coefficients of resistance of given value. The optimized condition of CrOx thin-film were thickness range of 2500 $\AA$ and annealing condition(350 $^{\circ}C$, 1 hr) in oxide partial pressure(3.5${\times}$10$^{-4}$ torr). Under optimum conditions, the CrOx thin-films is obtained a high resistivity, p=340 $\mu$Ωcm, a low temperature coefficient of resistance, TCR=-55 ppm/$^{\circ}C$. The CrOx thin films resistors which were fabricated in this paper had excellent characteristics as high precision resistors.

Electrical Properties of CNT/Al/Cu Composite Fiber Deposited by Thermal Vacuum Evaporation (열 증착법으로 제조된 CNT/Al/Cu 복합 파이버의 전기적 특성)

  • Kim, Jong-Seok;Shin, Paik-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.105-109
    • /
    • 2021
  • CNT fiber has been in the spotlight as a conductor, but the conductivity of CNT fibers do not match that of CNT. This study reveals that the conductivity of CNT fiber can be improved by depositing Al/Cu through vacuum evaporation. Cu is commonly used for deposition on CNT fibers. But low bonding strength of the interface between CNT and Cu could be a disadvantage. To overcome this, Al was deposited on the CNT fiber for forming aluminum carbide islands to increase the interfacial bonding strength. The conductivity characteristics were improved as the deposition time increased. The resistance was measured as a function of temperature, demonstrating that the temperature coefficient of resistance (TCR) is improved to be 241 ppm/℃ in comparison with that of as-received CNT fibers at -1,251 ppm/℃, when the CNT fibers are deposited with Al and Cu, respectively, for 90s and for 540s.

Effect of Manufacturing Parameters on Characteristic of Thin Film Resistor (박막저항기 특성에 미치는 제조 공정 인자의 영향)

  • Park Hyun-Sik;Yu Yun-Seop
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.1-7
    • /
    • 2005
  • The effect of trimming process to adjust accurate resistance of a thin-film resistor was studied with respect to low temperature coefficient of resistance(TCR) and high precision. The characteristics of a thin-film resistor fabricated by sputtering were investigated depending on trimming condition and annealing temperature. Measured results showed that the characteristic of a thin-film resistor was degraded with increased trimming speed. However, an average resistance deviation and a TCR were improved to $0.26\%$ and 52.77[ppm/K], respectively, through annealing treatment. Also, thin-film resistors with 1 k$\Omega$ and 10k$\Omega$ showed better performance compared to a resistor with 100k$\Omega$. The Optimal trimming speed and annealing temperature were 20mm/sec and 539K, respectively, and under this optimal condition, a thin-film resistor with an average resistance deviation of $0.31\%$ and a TCR of below 10[ppm/K] was obtained.

  • PDF

The Fabrication of Chromiun Thin-Film Strain Gauges and Its Characteristics (크롬박막 스트레인 게이지의 제작과 그 특성)

  • 김정훈;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.343-346
    • /
    • 1997
  • This paper presents the basic characteristics of Cr thin-film, which were deposited on glass by DC magnetron sputtering. The optimized deposition condition of Cr thin-film strain gauges were input power 7w/cm$^2$and the Ar working pressure was 9mtorr. GF(Gauge Factor), TCR(Temperature Coefficient of Resistance) and TCS(Temperature Coefficient of Sensitivity) of Cr thin-film strain gauges were 5.86, 400 ppm/$^{\circ}C$ and 0 ppm/$^{\circ}C$, respectively.

  • PDF

Measuring Apparatus for Convective Heat Transfer Coefficient of Nanofluids Using a Thermistor Temperature Sensor (더미스터 온도센서를 이용한 나노유체의 대류열전달계수 측정 장치)

  • Lee, Shin Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.103-110
    • /
    • 2016
  • Fine wires made from platinum have been used as sensors to evaluate the convection performance of nanofluids. However, the wire sensor is difficult to handle due to its fragility. Additionally, an unrealistic convective heat transfer coefficient (h) is obtained if a rigorous calibration process combined with precision equipment is not used for measurement. This paper proposes a new evaluation apparatus for h of nanofluids that uses a thermistor sensor instead of the platinum wire. The working principles are also explained in detail. Validation experiments for pure engine oil comparing h from the two sensors confirmed numerous practical benefits of the thermistor. The proposed system can be used as a useful tool to justify the adoption of developed nanofluids.