• Title/Summary/Keyword: Resin thickness

Search Result 577, Processing Time 0.034 seconds

A study on marginal fit of the ceramic-based hybrid resin restoration for dental CAD/CAM systems (치과용 CAD/CAM 전용 세라믹기반 하이브리드 레진 수복물의 변연 적합 연구)

  • Jeong, Chang-Seop;Park, Jong-Kyoung
    • Journal of Technologic Dentistry
    • /
    • v.42 no.3
    • /
    • pp.228-233
    • /
    • 2020
  • Purpose: This study aimed to assess and compare the marginal fit of ceramic-based hybrid resin restoration (HYB) and zirconia restoration (ZIR) for dental computer-aided design/computer-aided manufacturing systems. Methods: A stainless steel master model was produced. The impression was first made with silicone, and then stone working models were produced. A total of twenty restorations were fabricated with two different materials: ZIR and HYB. The silicone film thickness of the marginal gap was measured using a digital microscope; digital photos were taken at a magnification of ×160, and then analyzed using a measurement software. The values of the result were evaluated with the independent-sample t-test (α=0.05). All statistical analyses were performed with a statistical software. Results: The mean values for the marginal gap was 37.14±2.96 ㎛ for HYB, compared with 40.37±5.26 ㎛ for ZIR. No significant difference was found between ZIR and HYB (p=0.107). Conclusion: As a result, the marginal fit of the restoration fabricated using the hybrid resin was better than that of the restoration fabricated using zirconia. Also, the marginal fit of all groups was below the clinical acceptable range of 120 ㎛. Thus, HYB for dental CAD/CAM system in this study is expected to be suitable for clinical use in dentistry.

Preparation and Characterization of a Layered Organic-inorganic Composite by the Electrophoretic Deposition of Plate-shaped Al2O3 Particles and Electrophoretic Resin (전기영동적층법을 통한 판상 알루미나 입자와 전기영동 수지의 배향 유무기 복합체 제조 및 물성평가)

  • Park, Hee Jeong;Lim, Hyung Mi;Choi, Sung-Churl;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.460-465
    • /
    • 2013
  • Plate-shaped inorganic particles are coated onto a stainless steel substrate by the electrophoretic deposition of a precursor slurry which includes the inorganic particles of $Al_2O_3$ and polymer resin in mixed solvents to mimic the abalone shell structure, which is a composite of plate-shaped inorganic particles and organic interlayer binding materials with a layered orientation. The process parameters of the electrophoretic deposition include the voltage, coating time, and conductivity of the substrate. In addition, the suspension parameters are the particle size, concentration, viscosity, conductivity, and stability. We prepared an organic-inorganic composite coating with a high inorganic solid content by arraying the plate-shaped $Al_2O_3$ particles and electrophoretic resin via an electrophoretic deposition method. We analyzed the effect of the slurry composition and the electrophoretic deposition process parameters on the physical, mechanical and thermal properties of the coating layer, i.e., the thickness, density, particle orientation, Young's modulus and thermogravimetric analysis results.

In vitro study of Streptococcus mutans adhesion on composite resin coated with three surface sealants

  • Kim, Da Hye;Kwon, Tae-Yub
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.1
    • /
    • pp.39-47
    • /
    • 2017
  • Objectives: Although the coating of surface sealants to dental composite resin may potentially reduce bacterial adhesion, there seems to be little information regarding this issue. This preliminary in vitro study investigated the adhesion of Streptococcus mutans (S. mutans) on the dental composite resins coated with three commercial surface sealants. Materials and Methods: Composite resin (Filtek Z250) discs (8 mm in diameter, 1 mm in thickness) were fabricated in a mold covered with a Mylar strip (control). In group PoGo, the surfaces were polished with PoGo. In groups PS, OG, and FP, the surfaces polished with PoGo were coated with the corresponding surface sealants (PermaSeal, PS; OptiGuard, OG; Fortify Plus, FP). The surfaces of the materials and S. mutans cells were characterized by various methods. S. mutans adhesion to the surfaces was quantitatively evaluated using flow cytometry (n = 9). Results: Group OG achieved the lowest water contact angle among all groups tested (p < 0.001). The cell surface of S. mutans tested showed hydrophobic characteristics. Group PoGo exhibited the greatest bacterial adhesion among all groups tested (p < 0.001). The sealant-coated groups showed statistically similar (groups PS and FP, p > 0.05) or significantly lower (group OG, p < 0.001) bacterial adhesion when compared with the control group. Conclusions: The application of the surface sealants significantly reduced S. mutans adhesion to the composite resin polished with the PoGo.

Influence of Thickness on the Degree of Cure of Composite Resin Core Material (코어용 레진의 두께가 중합에 미치는 영향)

  • Kwon, Pyoung-Cheol;Park, Jeong-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.5
    • /
    • pp.352-358
    • /
    • 2006
  • The purpose of this study was to investigate the influence of thickness on the degree of cure of dual-cured composite core. 2, 4, 6, 8 mm thickness Luxacore Dual and Luxacore Self (DMG Inc, Hamburg, Germany) core composites were cured by bulk or incremental filling with halogen curing unit or self-cure mode The specimens were stored at $37^{\circ}C$ for 24 hours and the Knoop's hardness of top and bottom surfaces were measured. The statistical analysis was performed using ANOVA and Tukey's test at p = 0.05 significance level. In self cure mode, polymerization is not affected by the thickness. In Luxacore dual, polymerization of the bottom surface was effective in 2, 4 and 6 (incremental) mm specimens. However the 6 (bulk) and 8 (bulk, incremental) mm filling groups showed lower bottom/top hardness ratio (p < 0.05). Within the limitation of this experiment, incremental filling is better than bulk filling in case of over 4 mm depth, and bulk filling should be avoided.

Study on Analysis of RTM Process to Manufacture Bogie Frame Skin Depending on Thickness (대차 프레임 스킨의 두께에 따른 RTM 공정 특성 분석 연구)

  • Kim, Moosun;Kim, Jung-Seok;Kim, Seung Mo
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.372-377
    • /
    • 2015
  • In this study, we analyzed process numerically when a bogie frame skin is manufactured by applying resin transfer molding process using composite material instead of steel. Processing time was compared based on the various thickness of bogie frame skin and the weight variation of a skin was also considered. As a result, RTM processing time decreases and the weight of a bogie reduces as the thickness of frame skin increases with the assumption that fiber volume is constant inside the skin. By considering these results as the information to estimate the production cost, trade-off between two fields, processing time and structural properties, can be performed in design optimization to produce bogie frame.

SHEAR BOND STREGNTHS OF ONE-BOTTLE DENTIN ABHESIVE SYSTEMS (One-Bottle system 상아질접착제의 전단결합강도 해석)

  • Cho, Byeong-Hoon;Lim, Sung-Sam;Kwon, Hyuck-Choon;Um, Chung-Moon;Son, Ho-Hyun;Bae, Kwang-Sik
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.4
    • /
    • pp.546-553
    • /
    • 1999
  • In Older to evaluate the effectiveness of 'One-bottle dentin adhesive system', the shear bond strengths of two fourth generation dentin adhesive systems and two One-bottle systems to the occlusal dentin of the freshly extracted third molars were measured by the regulation of the ISO TR 11405. The fourth generation dentin adhesive systems used in this study were Scotchbond Multi-Purpose Plus and All-Bond 2, and the One-bottle systems were Single Bond and One-Step. The effects of the thickness of hybrid layer and adhesive layer, the diameter of resin tag and the ratio between the diameter of resin tag and that of dentinal tubule were analyzed as the contributing factors of the shear bond strength of dentin bonding systems from the Scanning Electron Microscopic images. The results were as follows: 1. The shear bond strengths of Scotchbond Multi-Purpose, All-Bond 2, and Single Bond were 16.98${\pm}$3.40 MPa, 15.10${\pm}$2.77 MPa and 15.05${\pm}$3.18 MPa, respectively. There were no statistical differences(p>0.05). 2. But, the shear bond strength of One-Step were significantly lower than those of the other groups (11.81${\pm}$1.95 MPa, p<0.05). 3. The thicknesses of hybrid layer and adhesive layer of One-Step were significantly thinner than those of the other groups(p<0.05). The differences of the diameter of resin tag(p=0.0685) and the ratio between the diameter of resin tag and that of dentinal tubule(p=0.2401) were not significant among all the material groups. 4. The thickness of hybrid layer and adhesive layer might be considered as contributing factors of the she at bond strengths of dentin bonding systems, but the diameter of resin tag and the ratio between the diameter of resin tag and that of dentinal tubule might not.

  • PDF

EFFECT OF COLLAGEN DISSOLUTION IN ACID CONDITIONED DENTIN LAYER ON RESIN-DENTIN ADHESION (산 표면처리된 상아질 표층의 교원섬유 용해가 레진-상아질간 결합에 미치는 영향)

  • Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.856-868
    • /
    • 1995
  • The effect of collagen dissolution in acid conditioned dentin layer on resin - dentin adhesion was investigated. 160 freshly extracted human molars were divided into 4 groups randomly and dentin surfaces were exposed. 40 exposed dentin surfaces were not acid conditioned and each 10 of them were applied with bonding agents within dentin bonding systems of All Bond 2, Scotchbond Multipurpose, Clearfil Photobond and Superbond D - Liner respectively. Each 10 of another 40 exposed dentin surfaces were acid conditioned by the acid within the above four bonding systems respectively and applied with corresponding bonding systems. After acid conditioning of the other 40 exposed dentin surfaces as above, they were treated with 5% NaOCl for 2 minutes, and each 10 of them were applied with the above four dentin bonding systems respectively. The remaining 40 dentin surfaces were acid conditioned and treated with 10% NaOCl for 2 minutes, and each 10 of them were applied with corresponding bonding agents as the above. After the procedures were finished, composite resin (Z -100, 3M Dent. Prod., USA) were applied on the dentin surfaces and light cured. Shear bond strength values were measured. Surface changes of fractured dentin specimens were observed using SEM (Hitachi S-2350, Japan). The following results were obtained. 1. In all of dentin bonding systems, shear bond strengths of non - conditioned specimens were significantly lower than those of acid conditioned specimens (P<0.05). 2. A statistically significant difference of bond strengths did not exist between acid conditioned specimens and 5% NaGCI retreated specimens applied with All Bond 2, Scotchbond Multipurpose and Clearfil Photobond (P>0.05). However, strength values of 5% NaOCl retreated specimens applied with Superbond D - Liner were lower than those of acid conditioned specimens (P<0.05). 3. In all the applied dentin bonding systems except Clearfil Photobond, bond strengths of 10% NaOCl retreated specimens were lower than those of acid conditioned and 5% NaOCl retreated specimens (P<0.05). 4. The resin - dentin hybrid layer of 4 - $5{\mu}m$ thickness was formed in the acid conditioned specimens applied with All Bond 2, Scotchbond Multipurpose and Superbond D-Liner. 5. The resin - dentin hybrid layer of 3 - $4{\mu}m$ thickness was still formed in the 5% NaOCl retreated specimens applied with All Bond 2 and Scotchbond Multipurpose. In addition, this layer was not completely removed after the retreatment with 10% NaOCl. Above results indicate that the dissolution of collagen in acid conditioned dentin layer by NaOCl solution can not be achieved completely and the collagens contribute to the resin - dentin adhesion considerably.

  • PDF

FRACTURE STRENGTH OF ZIRCONIA MONOLITHIC CROWNS (지르코니아 단일구조 전부도재관의 파절강도)

  • Jeong Hee-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.157-164
    • /
    • 2006
  • Purpose: The purpose of this study was to compare the fracture strength of the zirconia monolithic all-ceramic crowns according to the thickness(0.5 mm, 0.8 mm, 1.1 mm) and IPS Empress II ceramic crown of 1.5 mm thickness. Material and method: Eight crowns for each of 3 zirconia crown groups were fabricated using CAD/CAM system(Kavo, Germany) and eight Empress II crowns were made from silicone mold and wax pattern. Each crown group was finished in accordance with the specific manufacturer s instruction. All crowns were luted to the metal dies using resin cement and mounted on the testing jig in a universal testing machine. The load was directed at the center of crown with perpendicular to the long axis of each specimen until catastrophic failure occurred. Analysis of variance and Tukey multiple comparison test(p<.05) were applied to the data. Results and Conclusion: 1. The fracture strength of the zirconia monolithic all-ceramic crown was higher thickness increased(p<.05). 2 The fracture strength of 1.1 mm thickness zirconia monolithic all-ceramic crown was higher than the fracture strength of 1.5 mm thickness IPS Empress II crown(p<.05). 3. The fracture strength of 0.5 mm thickness zirconia monolithic all-ceramic crown exceeded maximum occlusal forces.

Antifouling Paint Resin Based on Polyurethane Matrix with Quaternary Ammonium Salt (Quaternary Ammonium Salt를 도입한 방오도료용 폴리우레탄 수지)

  • Kim, Dae-Hee;Jung, Min-Yeong;Park, Hyun;Lee, In-Won;Chun, Ho-Hwan;Jo, Nam-Ju
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.122-129
    • /
    • 2015
  • Recently, the development of a new class of anti-fouling paint resin which has excellent anti-fouling performance and no persistence in the marine ecology is necessary. In this study, we first polymerized polyurethanes (PUs) as the other type of matrix which have carboxylic acid groups by using poly(ethylene glycol) (PEG), 4,4'-diphenylmethane diisocyanate (MDI), and 2,2'-bis(hydroxyl methyl)-propionic acid (DMPA). And next, we synthesized final resins having quaternary ammonium salts on pendant acid groups of PUs. After synthesis, the physical self-polishing property of resin by the measurement of reduced thickness in sea water was tested. The mechanical property of antifouling paint resin was good when the molecular weight of PEG was 600 or less. It was confirmed that the adhesion of PU resin was deteriorated when the content of quaternary ammonium salt was incorporated over specific value.

Effect of metal primers and tarnish treatment on bonding between dental alloys and veneer resin

  • Choo, Seung-Sik;Huh, Yoon-Hyuk;Cho, Lee-Ra;Park, Chan-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.5
    • /
    • pp.392-399
    • /
    • 2015
  • PURPOSE. The aim of this study was to evaluate the effect of metal primers on the bonding of dental alloys and veneer resin. Polyvinylpyrrolidone solution's tarnish effect on bonding strength was also investigated. MATERIALS AND METHODS. Disk-shape metal specimens (diameter 8 mm, thickness 1.5 mm) were made from 3 kinds of alloy (Co-Cr, Ti and Au-Ag-Pd alloy) and divided into 4 groups per each alloy. Half specimens (n=12 per group) in tarnished group were immersed into polyvinylpyrrolidone solution for 24 hours. In Co-Cr and Ti-alloy, Alloy Primer (MDP + VBATDT) and MAC-Bond II (MAC-10) were applied, while Alloy Primer and V-Primer (VBATDT) were applied to Au-Ag-Pd alloys. After surface treatment, veneering composite resin were applied and shear bond strength test were conducted. RESULTS. Alloy Primer showed higher shear bond strength than MAC-Bond II in Co-Cr alloys and Au-Ag-Pd alloy (P<.05). However, in Ti alloy, there was no significant difference between Alloy Primer and MAC-Bond II. Tarnished Co-Cr and Au-Ag-Pd alloy surfaces presented significantly decreased shear bond strength. CONCLUSION. Combined use of MDP and VBATDT were effective in bonding of the resin to Co-Cr and Au-Ag-Pd alloy. Tarnish using polyvinylpyrrolidone solution negatively affected on the bonding of veneer resin to Co-Cr and Au-Ag-Pd alloys.