• 제목/요약/키워드: Residual space

검색결과 303건 처리시간 0.035초

Residual spatial autocorrelation in macroecological and biogeographical modeling: a review

  • Gaspard, Guetchine;Kim, Daehyun;Chun, Yongwan
    • Journal of Ecology and Environment
    • /
    • 제43권2호
    • /
    • pp.191-201
    • /
    • 2019
  • Macroecologists and biogeographers continue to predict the distribution of species across space based on the relationship between biotic processes and environmental variables. This approach uses data related to, for example, species abundance or presence/absence, climate, geomorphology, and soils. Researchers have acknowledged in their statistical analyses the importance of accounting for the effects of spatial autocorrelation (SAC), which indicates a degree of dependence between pairs of nearby observations. It has been agreed that residual spatial autocorrelation (rSAC) can have a substantial impact on modeling processes and inferences. However, more attention should be paid to the sources of rSAC and the degree to which rSAC becomes problematic. Here, we review previous studies to identify diverse factors that potentially induce the presence of rSAC in macroecological and biogeographical models. Furthermore, an emphasis is put on the quantification of rSAC by seeking to unveil the magnitude to which the presence of SAC in model residuals becomes detrimental to the modeling process. It turned out that five categories of factors can drive the presence of SAC in model residuals: ecological data and processes, scale and distance, missing variables, sampling design, and assumptions and methodological approaches. Additionally, we noted that more explicit and elaborated discussion of rSAC should be presented in species distribution modeling. Future investigations involving the quantification of rSAC are recommended in order to understand when rSAC can have an adverse effect on the modeling process.

베어링-축 조립체에서 축의 셰이크다운에 관한 연구 (Shakedown Analysis of Shaft in Bearing-Shaft Assembly)

  • 박흥근;박진무;오윤찬
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1740-1747
    • /
    • 2000
  • Under repeated rolling, initial plastic deformation introduces residual stresses which render the steady cyclic state purely elastic. This is called the process of shakedown. Many studies have been done about the shakedown in semi-infinite half space using calculated Hertizian pressure. In this paper shakedown processes in a shaft are studied by finite element analyses of a two dimensional(plane strain) model with elastic-linear-kinematic-hardening-plastic material subjected to repeated, frictionless rolling contact. Symmetric and non-symmetric pressure distributions are obtained using a simplified model of the bearing-shaft assembly. The rolling contact is simulated by repeatedly translating both pressure distributions along the surface of the shaft. By the influence of the non-symmetric pressure, larger residual radial tensile stress is generated in the immediate subsurface layer, which may make a crack propagate and, the subsurface undergoes a zigzag plastic deformation during the shakedown process, which may lead to a crack initiation.

Dual Exposure Fusion with Entropy-based Residual Filtering

  • Heo, Yong Seok;Lee, Soochahn;Jung, Ho Yub
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권5호
    • /
    • pp.2555-2575
    • /
    • 2017
  • This paper presents a dual exposure fusion method for image enhancement. Images taken with a short exposure time usually contain a sharp structure, but they are dark and are prone to be contaminated by noise. In contrast, long-exposure images are bright and noise-free, but usually suffer from blurring artifacts. Thus, we fuse the dual exposures to generate an enhanced image that is well-exposed, noise-free, and blur-free. To this end, we present a new scale-space patch-match method to find correspondences between the short and long exposures so that proper color components can be combined within a proposed dual non-local (DNL) means framework. We also present a residual filtering method that eliminates the structure component in the estimated noise image in order to obtain a sharper and further enhanced image. To this end, the entropy is utilized to determine the proper size of the filtering window. Experimental results show that our method generates ghost-free, noise-free, and blur-free enhanced images from the short and long exposure pairs for various dynamic scenes.

AN EVALUATION OF THE APERIODIC AND FLUCTUATING INSTABILITIES FOR THE PASSIVE RESIDUAL HEAT REMOVAL SYSTEM OF AN INTEGRAL REACTOR

  • Kang Han-Ok;Lee Yong-Ho;Yoon Ju-Hyeon
    • Nuclear Engineering and Technology
    • /
    • 제38권4호
    • /
    • pp.343-352
    • /
    • 2006
  • Convenient analytical tools for evaluation of the aperiodic and the fluctuating instabilities of the passive residual heat removal system (PRHRS) of an integral reactor are developed and results are discussed from the viewpoint of the system design. First, a static model for the aperiodic instability using the system hydraulic loss relation and the downcomer feedwater heating equations is developed. The calculated hydraulic relation between the pressure drop and the feedwater flow rate shows that several static states can exist with various numbers of water-mode feedwater module pipes. It is shown that the most probable state can exist by basic physical reasoning, that there is no flow rate through the steam-mode feedwater module pipes. Second, a dynamic model for the fluctuating instability due to steam generation retardation in the steam generator and the dynamic interaction of two compressible volumes, that is, the steam volume of the main steam pipe lines and the gas volume of the compensating tank is formulated and the D-decomposition method is applied after linearization of the governing equations. The results show that the PRHRS becomes stabilized with a smaller volume compensating tank, a larger volume steam space and higher hydraulic resistance of the path $a_{ct}$. Increasing the operating steam pressure has a stabilizing effect. The analytical model and the results obtained from this study will be utilized for PRHRS performance improvement.

Recent research towards integrated deterministic-probabilistic safety assessment in Korea

  • Heo, Gyunyoung;Baek, Sejin;Kwon, Dohun;Kim, Hyeonmin;Park, Jinkyun
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3465-3473
    • /
    • 2021
  • For a long time, research into integrated deterministic-probabilistic safety assessment has been continuously conducted to point out and overcome the limitations of classical ET (event tree)/FT (fault tree) based PSA (probabilistic safety assessment). The current paper also attempts to assert the reason why a technical transformation from classical PSA is necessary with a re-interpretation of the categories of risk. In this study, residual risk was classified into interpolating- and extrapolating-censored categories, which represent risks that are difficult to identify through an interpolation or extrapolation of representative scenarios due to potential nonlinearity between hardware and human behaviors intertwined in time and space. The authors hypothesize that such risk can be dealt with only if the classical ETs/FTs are freely relocated, entailing large-scale computation associated with physical models. The functional elements that are favorable to find residual risk were inferred from previous studies. The authors then introduce their under-development enabling techniques, namely DICE (Dynamic Integrated Consequence Evaluation) and DeBATE (Deep learning-Based Accident Trend Estimation). This work can be considered as a preliminary initiative to find the bridging points between deterministic and probabilistic assessments on the pillars of big data technology.

Design and transient analysis of a compact and long-term-operable passive residual heat removal system

  • Wooseong Park;Yong Hwan Yoo;Kyung Jun Kang;Yong Hoon Jeong
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4335-4349
    • /
    • 2023
  • Nuclear marine propulsion has been emerging as a next generation carbon-free power source, for which proper passive residual heat removal systems (PRHRSs) are needed for long-term safety. In particular, the characteristics of unlimited operation time and compact design are crucial in maritime applications due to the difficulties of safety aids and limited space. Accordingly, a compact and long-term-operable PRHRS has been proposed with the key design concept of using both air cooling and seawater cooling in tandem. To confirm its feasibility, this study conducted system design and a transient analysis in an accident scenario. Design results indicate that seawater cooling can considerably reduce the overall system size, and thus the compact and long-term-operable PRHRS can be realized. Regarding the transient analysis, the Multi-dimensional Analysis of Reactor Safety (MARS-KS) code was used to analyze the system behavior under a station blackout condition. Results show that the proposed design can satisfy the design requirements with a sufficient margin: the coolant temperature reached the safe shutdown condition within 36 h, and the maximum cooling rate did not exceed 40 ℃/h. Lastly, it was assessed that both air cooling and seawater cooling are necessary for achieving long-term operation and compact design.

건강기능식품 중 잔류용매 분석법 개발 및 모니터링 (Analytical Method Development and Monitoring of Residual Solvents in Dietary Supplements)

  • 이화미;신지은;장영미;김희연;김미혜
    • 한국식품과학회지
    • /
    • 제42권4호
    • /
    • pp.390-397
    • /
    • 2010
  • Residual solvents in foods are defined as organic volatile chemicals used or produced in manufacturing of extracts or additives, or functional foods. The solvents are not completely eliminated by practical manufacturing techniques and they also may become contaminated by solvents from packing, transportation or storage in warehouses. Because residual solvents have no nutritional value but may be hazardous to human health, there is a need to remove them from the final products or reduce their amounts to below acceptable levels. The purpose of this study was to develop and evaluate an analytical method for the screening of residual solvents in health functional foods. Furthermore, the aim of this study was to constitute a reasonable management system based on the current state of the market and case studies of foreign countries. Eleven volatile solvents such as MeOH, EtOH, trichloroethylene and hexane were separated depending on their column properties, temp. and time using Gas Chromatography (GC). After determining the GC conditions, a sample preparation method using HSS (Head Space Sampling) was developed. From the results, a method for analyzing residual solvents in health functional foods was developed considering matrix effect and interference from the sample obtained from the solution of solvents-free health functional foods spiked with 11 standards solutions. Validation test using the developed GC/HSS/MS (Mass Spectrometry) method was followed by tests for precision, accuracy, recovery, linearity and adequate sensitivity. Finally, examination of 104 samples grouped in suits was performed by the developed HSS/GC/MS for screening the solvents. The 11 solvents were isolated from health functional foods based on vapor pressure difference, and followed by separation within 15 minutes in a single run. The limt of detection (LOD), limit of quantification (LOQ), recovery and coefficient of variation (C.V.) of these compounds determined by the HSS/GC/MS were found to be 0.1 pg/mL, 0.1-125 pg/g, 51.0-104.6%, and less than 15%, respectively. Using the developed HSS/GC/MS method, residual solvent from 16 out of 104 health functional products were detected as a EtOH. This method therefore seems t o be a valuable extension ofanalytical method for the identification of residual solvents in health functional food.

Compliance Analysis and Vibration Control of the Safe Arm with MR-based Passive Compliant Joints

  • Yun, Seung-Kook;Yoon, Seong-Sik;Kang, Sung-Chul;Yeo, In-Teak;Kim, Mun-Sang;Lee, Chong-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2010-2015
    • /
    • 2003
  • In this paper, a design and control of the safe arm with passive compliant joints(PCJ) is presented. Each PCJ has a magneto- rheological damper and maximum 6 springs. Compliance analysis in Cartesian space is performed with the compliance ellipsoid; this analysis shows a map between compliance in the joint space and compliance in Cartesian space. Vibration control of the arm using an input shaping technique is also presented; the results of a simulation and an experiment prove that a fast motion of the safe arm without residual vibration can be performed.

  • PDF

Recursive State Space Model Identification Algorithms Using Subspace Extraction via Schur Complement

  • Takei, Yoshinori;Imai, Jun;Wada, Kiyoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.525-525
    • /
    • 2000
  • In this paper, we present recursive algorithms for state space model identification using subspace extraction via Schur complement. It is shown that an estimate of the extended observability matrix can be obtained by subspace extraction via Schur complement. A relationship between the least squares residual and the Schur complement matrix obtained from input-output data is shown, and the recursive algorithms for the subspace-based state-space model identification (4SID) methods are developed. We also proposed the above algorithm for an instrumental variable (IV) based 4SID method. Finally, a numerical example of the application of the algorithms is illustrated.

  • PDF

패리티 공간 방법을 이용한 항공기의 고장진단 및 제어기 재구성 (Fault Diagnosis and Control Reconfiguration of an Aircraft with Multiplicative Faults by Parity Space Approach)

  • 이승우;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.131-131
    • /
    • 2000
  • In this paper, a design method of a fault diagnosis filter for a system with multiplicative faults which cause to change its parameters is developed. Linear time-invariant systems are dealt with in discrete-time domain. The residual which is sensitive to a damage of control surface of an aircraft by parity space approach is defined. Next, the fault is isolated by a new decision logic. Control reconfiguration is achieved by the result of fault diagnosis. Finally, the feasibility of the method is illustrated with a simulation study of a fault diagnosis system for a damaged control surface of an aircraft.

  • PDF