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Abstract 
 

This paper presents a dual exposure fusion method for image enhancement. Images taken 
with a short exposure time usually contain a sharp structure, but they are dark and are prone to 
be contaminated by noise. In contrast, long-exposure images are bright and noise-free, but 
usually suffer from blurring artifacts. Thus, we fuse the dual exposures to generate an 
enhanced image that is well-exposed, noise-free, and blur-free. To this end, we present a new 
scale-space patch-match method to find correspondences between the short and long 
exposures so that proper color components can be combined within a proposed dual non-local 
(DNL) means framework. We also present a residual filtering method that eliminates the 
structure component in the estimated noise image in order to obtain a sharper and further 
enhanced image. To this end, the entropy is utilized to determine the proper size of the filtering 
window. Experimental results show that our method generates ghost-free, noise-free, and 
blur-free enhanced images from the short and long exposure pairs for various dynamic scenes. 
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1. Introduction 

There are many factors of camera parameters that can change the appearance of its images, 
such as exposure time, aperture size, ISO, camera gain, focal length, and lens properties. By 
controlling these parameters, images taken from the same scene can have a variety of different 
appearances and properties [1][2][3].  
Among these factors, the exposure time is an important one that determines the level of 

brightness and quality of an image. In general, images taken with a short exposure time tend to 
contain sharp properties, but they are dark and often suffer from noise due to an insufficient 
amount of photons incident to the camera sensor. On the other hand, images taken with a long 
exposure time are bright and usually free from noise. Its disadvantages, however, include 
blurry properties due to camera shake or object movement while accumulating photons for the 
camera sensors. Fig. 1 (a) and Fig. 1 (b) show an example of a long- and short-exposure image 
pair for the same scene that are taken from consecutive time periods. From this example, it is 
not difficult to see the complementary properties of different exposures. That is, Fig. 1 (a) is 
bright and has good color distribution, but it is blurry and some of the regions such as the sky 
region are over-saturated. In contrast, Fig. 1 (b) is sharp, and the sky regions show clear detail. 
It is, however, noisy and dark for most regions. 
Thus, it is difficult to select a single exposure time for arbitrary scenes that contain dynamic 

ranges, because the range of radiance incident to the camera is far larger than the intensity 
range that can be expressed in the images. In this situation, it is a natural idea to combine 
multiple exposures to generate more enhanced image quality. 

Static scenes can be easily fused to generate an enhanced image that contains good 
complementary properties that can be borrowed from each of the exposures. In general, 
however, it is not an easy task to combine images from moving scenes because of their 
different properties, such as darkness and brightness, as well as noise and blur, though this 
occurs more often in practical scenarios.  

In this paper, a practical method is proposed to combine different exposures for dynamic 
scenes that contain moving objects. We assume that the short exposure and long exposure 
contain a certain amount of noise and blur, respectively. In this situation, most methods fail to 
generate satisfactory fusion results, because they usually suffer from ghost artifacts, where the 
same object appears multiple times, and suffer from color artifacts by neglecting the noise and 
blur problems that can easily occur for short- and long-exposure images, respectively. 
 Fig. 1 (c) shows the result of a state-of-the-art high dynamic range (HDR) imaging method 

[4], whereas Fig. 1 (d) shows the result of our method. By comparing Fig. 1 (c) and Fig. 1 (d), 
the HDR method [4] generates noise as well as artifact results for over-saturated regions such 
as the sky region. In addition, some regions in the result of [4] contain blurry properties due to 
inaccurate estimation of correspondences between the dual exposures. In contrast, our method 
generates a better result that contains smaller noise and blur. 

In Section 2, we review previous works for various image fusion methods using multiple 
exposures. Section 3 describes the proposed method. Section 4 demonstrates the experimental 
evaluation and comparative results for various datasets. Finally, we conclude in Section 5. 
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(a)                                                                           (b)  

  
                                        (c)                                                                          (d)  
Fig. 1. Comparison of different methods. (a) Long exposure image LI . (b) Short exposure image SI . 

(c) Result of [4] using (a) and (b). (d) Result of our method using (a) and (b). 

2. Related Work 
The topic of image enhancement using multiple exposure images has earned growing 

attention due to its complementary properties such as blur and noise as well as brightness and 
darkness. To address these problems, various image fusion methods have been developed to 
generate more visually pleasing and enhanced images.  
In general, the HDR imaging approach [5] is a common method that aims to estimate the 

radiance value for each pixel by estimating an inverse camera response function (CRF) so that 
a single well-exposed image can be generated. This inverse CRF is usually estimated using 
multiple exposures [6]. Most HDR works mainly focus on addressing the ghost problems that 
usually occur with moving scenes, where the same object can appear multiple times in the 
resulting images. To this end, Jacobs et al. [7] used two measures, variance and uncertainty, to 
detect regions of the ghost so that the ghost regions can be excluded when fusing the input 
exposures. Grosch [8] also detected regions of the ghost using pixel colors that were estimated 
from the inverse CRF. They determined the ghost regions by thresholding the absolute 
difference between the estimated color value using the inverse CRF and the input color value. 
However, the ghost detection results of these methods [7] [8] are easily affected by the 
threshold values of those measures. Gallo et al. [9] estimated the ghost pixels using a 
block-wise window comparison. Then, the block boundaries are blended to reduce the 
difference in the color values between neighboring pixels. Raman et al. [10] also presented a 
ghost detector using a block-wise comparison of different exposures similar to [9]. However, 
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these methods [9][10] are not free from color artifacts around the block boundaries due to 
inaccurate blending.  

Meanwhile, there are other methods that address this ghost problem by defining a proper 
weighting function when fusing images. Khan et al. [11] proposed a pioneering ghost removal 
method where the weighting function is composed of two weighting terms, the weight of being 
correctly exposed and the weight of belonging to the background. Heo et al. [12] proposed a 
generalized weighted filtering method for effective ghost detection and elimination for robust 
HDR imaging. Park and Park [13] proposed a new HDR imaging method combining multiple 
aperture images. Recently, Sen et al. [4] proposed an image synthesis method that generates an 
HDR image that contains information from all the input exposures. For each exposure level, 
they synthesize a new exposure image changed from the reference exposure by finding 
optimal patches using the PatchMatch (PM) [14] between the reference and new exposure 
images. 
On the other hand, there are methods that directly combine multiple images that have 

different properties. Mertens et al. [15] presented an exposure fusion (EF) method by fusing a 
Laplacian pyramid of multiple exposures. This method is fast and simple, but it assumes that 
the scenes in the multiple exposures are stationary. Tico et al. [16] proposed a method to 
combine multiple exposures where there is motion blur in one of them. They combined two 
types of EF results, such as EF using original input exposures and EF using images that are 
color-calibrated from the shortest exposure as a reference. The limitation of this approach is an 
ambiguity problem when a moving object and its background have similar brightness, because 
its analysis is focused only on the intensity comparison. Agarwala et al. [17] presented a 
method to combine images where the objects are severely moving. Their method is based on 
an interactive stroke to denote important regions that can be combined using gradient fusion. 
Petschnigg et al. [18] presented a method that synthesizes a new image from a pair of flash and 
no-flash images by merging the ambient component of the no-flash image with the 
high-frequency detail of the flash image. Similarly, Yuan et al. [19] proposed a deblurring 
method for a noisy and blurry image pair by iteratively estimating the blur kernel and 
performing deconvolution. The limitation of [18] and [19] is that the input image pair should 
be stationary. Thus, for images that contain moving objects, [18] and [19] cannot generate a 
stable result. Zhang et al. [20] presented an analysis comparing deblurring using a single 
image and denoising using multiple images for HDR imaging from high-resolution cameras. 
They concluded that denoising is a more reliable solution than deblurring for obtaining a better 
image. Joshi and Cohen [21] presented a method that generates an enhanced image from a 
sequence of images that suffer from shot and quantization noise, sensor dust, and haze of the 
scene by using a novel local weighted averaging method. HaCohen et al. [22] proposed a 
method to generate a new image from a target and source image pair. The method finds 
corresponding patches, and computes a global color mapping function. However, they do not 
deal with different exposure settings and the noise problems that usually occur in the dark 
images.  
Most of these works do not address the noise and blur problem together when combining the 

different exposures. Thus, our method assumes the most practical cases where there are noise 
and blur in the input exposures as well as dynamic motion between exposures. A detailed 
explanation of the proposed method follows in the next section. 
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Fig. 2. Block diagram of the proposed method. 

3. Proposed Method 
Fig. 2 shows a block diagram of the proposed method. First, we calibrate the color of the 

short exposure to that of the long exposure for the following procedures. To this end, we 
propose to exploit histogram matching [23] with EF [15]. The histogram matching [23] is used 
to transform the short exposure to the long exposure so that the brightness levels of them can 
be similar. However, if there are over-exposure properties such as over-saturated regions in 
the long exposure, those unwanted properties are also transferred to the resultant image S

hI . 
Thus, we also adopt the EF [15] which selects and combines well-exposed regions between the 
short exposure SI  and the transformed short exposure S

hI  in order to generate more enhanced 

image SJ .  
The problem of SJ  is that it contains the amplified noise that is contained in the short 

exposure as shown in Fig. 1 (d). To deal with this problem, we propose a dual non-local 
(DNL) means method which extended the idea of [24] in order to generate an initial enhanced 
image. Buades et al. [24] generated a denoised image using non-local average by finding 
patches that have similar structure for all pixels in the search window. In general, it is not a 
trivial task to naively extend the framework of [24] to the multiple exposures which include 
noisy and blurry image pair, because it is difficult to find correspondences between them. Thus, 
we also propose a scale-space patch-match method to find correspondences between the noisy 
and blurry image pair. 
Finally, a residual filtering method based on entropy is presented to further enhance the 

image. Our method is modification of the previous method [25] that proposed a method to 
filter the noise layer after separating it from the original noisy image based on three weight 
terms including color, spatial, and structure weights. They aim to eliminate the image structure 
in the noise layer, and generate a sharper image from an initial denoised image. However, [25] 
fixed the size of the filtering window that can results in blurring for some regions. Thus, we 
propose an adaptive filtering method by determining the size of window based on the entropy 
of the window. Detailed explanations of each process are given below: 
 

3.1 Color Calibration Using Exposure Fusion 
 
In order to find correspondences between different exposures, we calibrate the brightness of 
the short-exposure image SI to that of the long-exposure image LI . First, the histogram of SI  
is matched to that of LI  as follows: 
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                                        (a)                                                                             (b)  
 
Fig. 3. Color calibration result using our method. (a) Histogram matching result S

hI  using Fig. 1 (a) and 

Fig. 1 (b) as the input image pair. (b) Exposure fusion result SJ  using Fig. 3 (a) and Fig. 1 (b). 
 
 

( ),S L S
h SI h I=                                                                 (1) 

where L
Sh  denotes the histogram matching operation [23] that changes the color of SI  to that 

of LI , and S
hI  is the result of histogram matching. Fig. 3 (a) shows an example of S

hI  using   
LI  and SI in Fig. 1 (a) and Fig. 1 (b), respectively. Although the brightness of S

hI  is similar 

to LI , it still contains saturated regions where SI  has clearer details such as cloudy sky 
regions. Thus, we combine S

hI and SI  using the EF technique [15] as follows: 

,S S S
hJ I I= ⊕                                                               (2) 

where SJ is the result of EF, and the ⊕  operation represents the EF process. Fig. 3 (b) shows 

an example of SJ . Note that although SJ  shows better details compared to the original input 
images in Fig. 1 (a) and Fig. 1 (b), it still contains notably amplified noise and color artifacts. 
Thus, we need to decrease the noise and enhance it with the long exposure image using the 
following proposed method. 
 

3.2 Dual NL-Means using Patch-Match with a Coherent Position Constraint 
 
Short exposure is sharp, dark and noisy, whereas long exposure is blurry, bright and noiseless. 
These complementary properties motivate us to combine the two images to generate a sharper, 
noise-free, and visually pleasing image that has good exposure. To this end, it is required to 
find good correspondences between two exposures, because we assume there are movements 
between them. Let us denote the correspondence function using our patch-match method with 
a coherent position constraint (PMC) as ( )f ⋅  such that ( )f p p′= , where p and p′are the 
corresponding pixel pair in images SJ and LI , respectively. In general, it is not an easy task to 
find accurate correspondences between noisy and blurry images because of their different 
properties. The resized small image, however, tends to have less noise and blur compared to 
the original full-size images. Thus, it enables us to find more reliable matches between SJ  
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Fig. 4. Search selection scheme for our PMC method. 
 
and LI . This is one of the reasons that we use a scale-space analysis on both SJ and LI  for 

applying patch-match [14]. Hence, we build image pyramids for both images, where S
mJ  and 

L
mI  represent the thm  level of the pyramid of SJ  and LI , respectively, where the coarsest 

level is 1m M= −  and the finest level is 0m = . The number of levels of the pyramid is 

defined by min 1log / log
min( , ) 2

WM
W H

   =    
  

, where W  and H  respectively represent 

width and height of the image, and we set minW  as  min 29W = . Here, we add a coherent 
position constraint in our scale-space patch-match method, because we assume that dual 
exposures are taken in consecutive time periods and most of the pixels move slightly, except 
for the moving objects between the short and long exposures. 
Our method in each pyramid level is composed of four steps, including 1) initialization, 2) 

propagation and random search, 3) coherent position search, and 4) search selection. 
Explanations of each step follow.  
 
Matching Measure. Matching measure is an important criterion for determining the quality 
of match between two patches. In our method, it is required to measure the accuracy of 
matches between noisy and blurry patches. This circumstance hinders conventional matching 
measures such as sum of squared difference (SSD) or sum of absolute difference (SAD) from 
finding proper matches. Thus, our method uses the Gaussian weighted window matching as a 
matching measure for two patches in order to give more weight to the center pixel. The 
definition of our measure ( , )D ⋅ ⋅  is as follows: 
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(a)                                                                           (b) 

 
Fig. 5. Patch-match result for input images in Fig. 1 (a) and Fig. 3 (b).  

(a) Result using [14]. (b) Result using our PMC method. 
 

2
2

2
( ),
( ),

1( , ) exp ( ) ( ) ,
2

S L

q N p d
q N p

p q
D p p J q I q

Z σ∈
′ ′∈

 − −
′ ′=   −

 
 

∑                       (3) 

 
where Z represents the normalization factor, and ( )N p  and ( )N p′  are the set of pixels in 
the 5 5×  window centered at pixel Sp J∈ , and Lp I′∈ , respectively, and dσ  is empirically 

set as 0.67dσ = . 
 
Initialization. Our algorithm starts from the coarsest 1thM − level. Here, we randomly assign 
the correspondences between 1

S
MJ −  and 1

L
MI −  as the original PM method [14]. Except at the 

1thM −  level, we use the result of the previous 1thm +  scale for the current thm scale as initial 
correspondences by simply scaling up the result from the previous scale. This initialization 
makes our method more accurate than that of starting from a random guess. 
 
Propagation and Random Search. In our propagation stage, we use four neighborhoods to 
find more appropriate patches around the center pixel, unlike the original PM method [14], 
which uses only two neighborhood pixels. The random search phase is the same as [14], which 
randomly samples and selects one of the pixels in the search range by testing the improvement 
of the current match.  
 
Coherent Position Search. Unlike the original PM method [14], we put an additional 
constraint in our framework. The coherent position search finds an optimal patch around the 
current position. This is because we assume that, for most regions, there are no significant 
movements between two images because of the short period of time between the two images.  
Thus, most pixels have a high probability that a proper patch can be found around the current 
position. 
 
Search Selection. Finally, we select a more appropriate match as a good match between the 
result of the random search and that of the coherent position search, based on the measure 

( , )D ⋅ ⋅  in Eq. (3), that is defined by 
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( ),
( )

( ) arg min{ ( , ), ( , )},
c
r

c r
q N c
q N r

f p D p q D p q
′∈
′∈

′ ′=                                            (4) 

 
where c  is the same position as p , r  is the position that is determined from scaling up the 
correspondence result 1( )mf + ⋅  of the previous 1thm +  scale, and cq′  and rq′  are the position 
within the search range of the coherent search and random search, respectively. Fig. 4 depicts 
our search selection scheme.   

Fig. 5 compares the results of [14] and our PMC method for the input pair SJ  and LI . Note 
that our method generates a more plausible result, whereas the result using the original method 
[14] is blurry because of incorrect correspondences.  
On the other hand, although the generated image using our PMC method contains less noise 

and more detail than [14], it still contains pixels that suffer from noisy and blurry artifacts due 
to inaccurate correspondences. Here, using the correspondence function ( )f ⋅  obtained from 
Eq. (4), we present a DNL means framework using both SJ and LI . By using both the short 
and long exposures, we have advantages such as enhanced color distribution, which is 
borrowed from the long exposure, as well as enhanced denoising performance due to the 
increased number of support pixels. Thus, our enhanced value ( )DI p  for pixel p is defined 
by 

( ),
( ),

1( ) ( , ) ( ) ( , ) ( ) ,
D
D

D S L
S L

q W pp
q W p

I p w p q J q w p q I q
Z ∈

′ ′∈

′ ′ = + ∑                        (5) 

where ( )p f p′ = , and ( )DW p  and ( )DW p′  are the set of pixels in the window size of 

21 21×  around pixel Sp J∈  and Lp I′∈ , respectively, and pZ  is the normalization factor. 

The weight function ( , )Sw p q  is defined by 

( , )( , ) exp ,S
D p qw p q
κ

− =  
 

                                                  (6) 

where p and q  are pixel positions in SJ , the distance function ( , )D p q  is defined similarly 
to Eq. (3), and κ  is empirically set as 100.0κ = . Note that it is necessary to carefully select 
support pixels from LI  with blurry properties in order to prevent quality degradation in our 
DNL framework. Thus, we define ( , )Lw p q′  as follows: 
 

0

0 0 min

0 min

( , )( , ) exp ,

( , ) ( , ) ( )
( , ) ,

0 ( , ) ( )

L

L L S
L

L S

D p qw p q

w p q if w p q w p
w p q

if w p q w p

κ

η
η

′− ′ =  
 

′ ′ > ⋅
′ =  ′ ≤ ⋅

                             (7) 

 
where q′ are pixel positions in LI , η  is empirically set as 10η = , and min ( )Sw p is defined by 
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Fig. 6. Flow diagram of our entropy-based residual filtering. 
 

min ( ) min ( , )S Sq
w p w p q= .                                                       (8) 

 
Fig. 9 (e) shows an example of the DI  result from Eq. (5). Although this initial enhanced 
image DI  is clearly better than that of the result using Eq. (4), it tends to suffer from blur due 
to over-smoothing in the DNL-means framework. Thus, we still need to sharpen and further 
enhance the result using our entropy-based residual filtering as described in the following 
subsection. 
 

3.3 Entropy-Based Residual Filtering 
 
Fig. 6 depicts the procedure of our entropy-based residual filtering method. The blurring 
property in DI  is due to the existence of the structure component in the residual image SN , 
which is defined [25] as 
 

S S DN J I N S≡ − = + .                                                    (9) 
 

Note that SN contains the noise component N  as well as the structure component S , where  
S  is the unwanted component we need to eliminate by our filtering method. To this end, it is 
important to determine a proper window size for filtering. For structured regions of the 
residual image, the filtering size should be larger than that of pure noisy regions. Thus, we 
adaptively determine the size of the filtering window using entropy as a measure of the 
randomness of the patch. Hence, the region of larger entropy would have a smaller-size 
filtering window, where the entropy ( )pε  for pixel p  is defined by 
 

255

255

( )

( ) ( ) log ( ),

1( ) [ ( ) ],

z

S

q W p

p P z P z

P z T N q z
Z

εε

ε
=−

∈

= −

= =

∑

∑
                                          (10) 
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where [ ] 1T ⋅ =  if the argument is true and 0 otherwise, and Zε  is the normalization factor. 
The probability ( )P z  is constructed by counting the number of pixels that have intensity 
gradient value [ 255,255]z∈ − , and ( )W pε  is fixed as a 7 7× size of window for pixel p .  

Thus, the structure component S  in SN  can be extracted similar to [25] using the guide 
image DI  that is defined by 

( )

1( , ) ( , ) ( ),
F

D D S
tot

q W pF

S p I V q I N q
Z ∈

= ∑                                        (11) 

where ( )FW p  is the set of pixels in the filtering window centered at pixel p , and FZ  is the 
normalization factor. The radius ( )FR p  of this filtering window ( )FW p  is adaptively 
determined by  

( ) 3 ( ),F DR p pσ=                                                             (12) 
where ( )D pσ  is defined using the entropy ( )pε  in Eq. (10) as follows: 

0

0

( )( ) expD D
pp eσ σ

e
 −

=  
 

,                                            (13) 

where 0
Dσ  and 0ε are empirically set as 0 7Dσ = and 0 1.0ε = , respectively, and ( )pε  plays 

the role of attenuating the radius when the entropy of the residual component is large, which 
indicates there is pure noise rather than some structures. Fig. 7 (d) shows an example of the 
entropy for each region, where brighter pixels indicate the higher entropy values. 

Meanwhile, the weight totV  in Eq. (11) is composed of three terms similar to [25] as follows: 
 

( , ) ( ) ( , ) ( , ),D D D
tot G C SV q I V q V q I V q I= ⋅ ⋅                                         (14) 

where each weight term is defined by 
 

2

2

2

2

( ) exp ,
( )

( ) ( )
( , ) exp ,

( ; , ) ( ; , )( , ) .
2

G
D

D D
D

C
C

D D
D S S

S

p q
V q

p

I p I q
V q I

V q p I V p q IV q I

σ

σ

 − −
=  

 
 

 − − =
 
 

+
=

                              (15) 

Here, ( )GV q , ( , )D
CV q I , and ( , )D

SV q I , respectively, represent the geometric weight, color 

weight, and structure weight. The value of Cσ is empirically set as 25Cσ = , and 

( ; , )D
SV q p I is defined by 
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1

2

( )

( ) ( )
( ; , ) exp ,

( )

1 ( ) ( ) ,
( )

T
pD

S
D

D D T
p

q W p

p q D p q
V q p I

p

D I q I q
W p

σ

−

∈

 − − −
=   

 

= ∇ ∇∑
                                 (16) 

 
where I∇ is the gradient vector, and pD  is the structure tensor that measures the structure 
around pixel p . 
From Eq. (9) and Eq. (11), the noise component N  from the residual component SN is 

computed by  
SN N S= − .                                                                   (17) 

Now, the final enhanced image FI can be obtained by subtracting the input noisy image from 
the estimated noise component as follows 
 

F SI J N= − .                                                              (18) 
Fig. 7 shows an example of each component SN , S , N , entropy values, and our final result 

FI . Fig. 8 shows magnified views for cropped regions of the images in Fig. 7. Note that the 
structure component S is eliminated in our final noise component N , which shows a more 
random property than that of SN . Fig. 9 compares the intermediate results for each process in 
our method. Our final result FI  shows clearer and noise-free results compared to the 
intermediate results. 
 

  
(a)                                                                          (b)  

  
                                          (c)                                                                          (d)  
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                                                                                  (e)  

Fig. 7. Example of our entropy-based residual filtering. (a) SN . (b) S . (c) N .  
(d) Estimated entropy ε , which is scaled to gray level for display purpose. (e) FI . 

 

   
(a)                                          (b)                                             (c) 

Fig. 8. Magnified views of the cropped region of the images in Fig. 7. (a) SN . (b) S . (c) N . 
 

   
(a)                                          (b)                                             (c) 

 

   
(d)                                          (e)                                             (f) 

Fig. 9. Magnified views of the cropped regions. (a) LI . (b) SJ . (c) Result using [14].  
(d) Result using Eq. (4). (e) DI . (f) FI . 
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4. Experimental Results and Analysis 
 
In order to test the performance of our method, we performed various experiments for 
synthetic and real datasets.  
 
4.1 Results for Synthetic datasets 
 
For these experiments, we used optical flow datasets including “Dogdance,” “Backyard,” 
“Grove2,” “Evergreen,” and “Teddy” provided by the Middlebury dataset [26]. Each dataset  
consists of eight frames, where the first and the last frame are used as our input images in order 
to generate images that have the largest difference of motion between them. Thus, we blur the 
first frame in the input sequence using a 17 17× size nonlinear blur kernel; the last frame of 
each set is contaminated by zero-mean Gaussian noise with a standard deviation of 12.5 for 
each color channel. Note that these two input images have different properties, such as noise 
and blur, and there are significant object movements between them. Thus, we used these two 
images as input of our method.  
 Table 1 and Table 2 respectively show the quantitative PSNR and SSIM [27] results for the 
initial enhanced image DI and the final enhanced image FI  using our method. First, we 
compared our DNL-means method with the NL-means method [24] that uses only a single 
image SJ . As shown in Table 1 and Table 2, our method outperforms the method of [24] for 
obtaining initial enhanced images, because our method uses the dual exposures that contain 
more support pixels. The main difference of [24] and our method is in Eq. (5), where [24] uses 
only a single image, while our method is designed to use dual exposure images based on the 
estimated correspondence function ( )f ⋅  using PMC in Eq. (4). 

Meanwhile, we also compared our entropy-based residual filtering method with [25]. In this 
case, we used the same initial enhanced image DI as input. As shown in Table 1 and Table 2, 
our method generates more enhanced results than those of [25] for most of the datasets. The 
method of [25] uses a fixed size of window for the residual filtering, which can cause over- or 
under-smoothing results for some regions. In contrast, our method adaptively controls the 
window size by means of the entropy in the window. That is the reason why our method 
outperforms the method of [25]. Fig. 10 shows comparison results for the example images, 
and corresponding magnified views of the images are shown in Fig. 11. Note that the noise 
component of [25] still contains the structure component, whereas the noise component of our 
method is more random than that of [25], which indicates that our method estimates the noise 
component more accurately, enabling our method to generate better noise-free and blur-free 
results than those of [25]. 

 
Table 1. Performance comparison (PSNR) for synthetic datasets (dB) 

Dataset SJ  DI  
using [24] 

DI  
using ours 

FI  
using [25] 

FI  
using ours 

Dogdance 26.47 31.80 32.16 32.35 32.39 
Backyard 26.43 31.14 31.34 31.52 31.57 
Grove2 26.25 29.61 29.80 29.93 30.01 

Evergreen 26.27 31.04 31.86 32.04 32.08 
Teddy 26.24 31.50 31.69 31.90 32.03 
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(a)                                                                  (b)  

  
(c)                                                                   (d) 

  
(e)                                                                     (f) 

Fig. 10. Comparison results for dataset “Backyard”. (a) LI . (b) SJ . (c) DI  using [24]. (d) DI  using 
our method. (e) FI  using [25]. (f) FI  using our method. 

 

  
(a)                                                                      (b)  
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(c)                                                                       (d)  

  
(e)                                                                      (f)  

  
(g)                                                                       (h) 

Fig. 11. Magnified views of results for dataset “Backyard”. (a) SJ . (b) Ground truth I . (c) DI  using 
[24]. (d) DI  using our method. (e) FI  using [25]. (f) FI  using our method. (g) N  using [25]. (h) N  

using our method. 
 

Table 2. Performance comparison (SSIM) for synthetic datasets 
Dataset SJ  DI  

using [24] 
DI  

using ours 
FI  

using [25] 
FI  

using ours 
Dogdance 57.09 84.62 85.81 86.22 86.47 
Backyard 60.11 84.29 84.88 85.38 85.69 
Grove2 65.68 84.42 84.30 85.26 85.33 

Evergreen 60.27 85.62 87.67 88.17 88.39 
Teddy 57.63 85.06 85.42 86.37 86.52 

 
Table 3. Average time comparison (sec) of each process for synthetic datasets 

Process SJ  
( )f ⋅  

using 
PMC 

DI  
using 
[24] 

DI  
using  
ours 

FI  
using 
[25] 

FI  
using  
ours 

Total Time 
(ours) 

AvgTime 0.4 61.3 29.6 54.9 54.7 15.1 131.7 
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On the other hand, we compared time duration of our method with those of other methods for 
the synthetic datasets in Table 1 and Table 2.  Each input image has size of 640 x 480, and we 
use a PC with Intel® i7-4770 CPU @3.40GHz for our experiments. Table 3 shows the 
average time (sec) to compute each process for the synthetic datasets. The process of 
computing SJ  in Eq. (2) includes the histogram matching and the exposure fusion operation 
which are relatively faster than other processes. The process of computing ( )f ⋅  using PMC in 
Eq. (4) takes relatively longer time, because it involves the Gaussian-weighted window 
matching in Eq. (3) which is somewhat computationally expensive. For the process of 
computing DI  using the estimated function ( )f ⋅ , we compared time duration of [24] with that 
of our method. Although [24] takes less time than ours, it cannot fully utilize the dual exposure 
information. In contrast, our method combines the dual exposure to generate less noisy results. 
For the process of computing FI , we compared time duration of [25] with that of our method. 
Note that our method adaptively determines the size of window for residual filtering based on 
the entropy, while [25] fixed the size of it. Thus, our method is faster and more efficient than 
[25]. 
 
4.2 Results for Real datasets 
 
The main goal of our method is to generate a reliable result from a pair of different exposures. 
Thus, we also tested our method on real datasets where each dataset is composed of a 
short-exposure and long-exposure image taken from consecutive periods of time. These real 
datasets were taken using a Canon PowerShot G3 with auto exposure bracketing mode. These 
datasets contain various practical factors such as noise and blur as well as object and camera 
movements. Fig. 12, Fig. 13, and Fig. 14 show the comparative results of our method and the 
method of [4], which is the state-of-the-art HDR method for dynamic scenes. The method of 
[4] is also based on the patch-match method [14] with optical flow initialization. For these 
datasets, [4] generates significantly noisy and blurry HDR images. In contrast, our method 
generates sharper and less noisy results. Thus, our method is more robust to a variety of image 
degrading factors including noise, blur, and object movements. 
 

  
                                          (a)                                                                      (b) 
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(c)                                                                       (d) 

 
Fig. 12. Comparison results for dual exposure input images.  

(a) Long exposure. (b) Short exposure. (c) Result of [4]. (d) Result of our method. 
 

  
(a)                                                                     (b) 

  
(c)                                                                    (d) 

Fig. 13. Comparison results for dual exposure input images.  
(a) Long exposure. (b) Short exposure. (c) Result of [4]. (d) Result of our method. 
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(a)                                                                      (b) 

  
(c)                                                                      (d) 

Fig. 14. Comparison results for dual exposure input images.  
(a) Long exposure. (b) Short exposure. (c) Result of [4]. (d) Result of our method. 

5. Conclusion 
In this paper, we have proposed a dual exposure fusion method with entropy-based residual 
filtering. To this end, we adopt a patch-match method with an additional coherent position 
constraint, and a DNL means method is also proposed for obtaining initial enhancement 
results. To obtain a more enhanced image, we propose an entropy-based residual filtering 
method that effectively eliminates the structure component in the residual image. 
Experimental results show that our method robustly combines the short and long exposures 
and generates enhanced images from various dynamic scenes. 
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