
Journal of Ecology
and Environment

Gaspard et al. Journal of Ecology and Environment           (2019) 43:19 
https://doi.org/10.1186/s41610-019-0118-3
REVIEW Open Access
Residual spatial autocorrelation in

macroecological and biogeographical
modeling: a review

Guetchine Gaspard1, Daehyun Kim2,3* and Yongwan Chun4
Abstract

Macroecologists and biogeographers continue to predict the distribution of species across space based on the
relationship between biotic processes and environmental variables. This approach uses data related to, for example,
species abundance or presence/absence, climate, geomorphology, and soils. Researchers have acknowledged in
their statistical analyses the importance of accounting for the effects of spatial autocorrelation (SAC), which
indicates a degree of dependence between pairs of nearby observations. It has been agreed that residual spatial
autocorrelation (rSAC) can have a substantial impact on modeling processes and inferences. However, more
attention should be paid to the sources of rSAC and the degree to which rSAC becomes problematic. Here, we
review previous studies to identify diverse factors that potentially induce the presence of rSAC in macroecological
and biogeographical models. Furthermore, an emphasis is put on the quantification of rSAC by seeking to unveil
the magnitude to which the presence of SAC in model residuals becomes detrimental to the modeling process. It
turned out that five categories of factors can drive the presence of SAC in model residuals: ecological data and
processes, scale and distance, missing variables, sampling design, and assumptions and methodological approaches.
Additionally, we noted that more explicit and elaborated discussion of rSAC should be presented in species
distribution modeling. Future investigations involving the quantification of rSAC are recommended in order to
understand when rSAC can have an adverse effect on the modeling process.

Keywords: Spatial autocorrelation, Residual spatial autocorrelation, Non-stationarity, Missing variables, Sampling
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Background
Spatial autocorrelation
The use of spatial or geographical data entails learning
about the properties of such data. Disciplines in which
geographic data are used are all concerned with how
such data are characterized, whether it be geography,
ecology, or any related field where the space and time
factors are involved. One of the most common issues
regarding spatial data is the existence of structure or
dependence among the observations. Often, processes,
whether they be environmental or biological, are related
spatially or temporally. This fact translates the notion of
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distance decay wherein the degree of dependence
decreases over space. This is the basis of Tobler’s (1970)
first law of geography: everything is related to everything
else, but nearby things are more related than distant
things. This whole argument falls under the concept of
spatial autocorrelation (SAC). This term, which was
introduced around the late 1960s and early 1970s (Getis
2008), is loosely defined as follows:

The property of random variables taking values, at
pairs of locations a certain distance apart, that are
more similar (positive autocorrelation) or less
similar (negative autocorrelation) than expected for
randomly associated pairs of observations (Legendre
1993, p. 1659).
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Depending on the factors that drive natural processes,
SAC is categorized into two major types: exogenous and
endogenous SAC (Legendre 1993). The former is caused
by external environmental (physico-chemical, climato-
logical, geomorphological) factors such as temperature,
soil, and terrain attributes (Dormann 2007a; Kissling and
Carl 2008; Miller 2012; Václavík et al. 2012). It is generally
associated with broad-scale spatial trends (Miller et al.
2007; Václavík et al. 2012). Endogenous SAC is induced
by biological (or biology-related) processes (geographic
dispersal, predation, disturbance, inter-specific inter-
actions, colonial breeding, home-range size, host availabi-
lity, parasitization risk, metapopulation dynamics, history)
that are inherent to the species data (Dormann 2007a;
Kissling and Carl 2008; Miller 2012; Crase et al. 2014). It
reflects contagion effects in cases of positive autocorre-
lation or dispersion effects for negative autocorrelation
(Lichstein et al. 2002; Griffith and Peres-Neto 2006; Crase
et al. 2014). Such endogenous SAC is relevant at fine
scales or to high-resolution stochastic biotic processes
(Dormann 2007a; Miller et al. 2007; Chun and Griffith
2011; Václavík et al. 2012; Kim 2018).

Residual spatial autocorrelation
In the modeling context, residuals represent the differ-
ences between observed and predicted values. Hence,
rSAC indicates the amount of SAC in the variance which
is not explained by explanatory variables. Understanding
residuals distribution is key to regression modeling, as
assumptions such as linearity, normality, homoscedas-
ticity (equal variance), and independence rely on the
behavior of the errors.
Incorporating or ignoring rSAC has implications

directly impacting the outcomes of species distribution
modeling (SDM). In fact, failing to appropriately address
rSAC will likely lead to three major statistical problems.
First, the standard errors might be underestimated, leading
to Type I error. This means that the existence of depen-
dence between pairs of observations across space where
independence is assumed can result in falsely rejecting,
much more often than expected, the null hypothesis while
it is true (Lennon 2000). Consequently, that will make the
regression model itself unreliable (Legendre 1993; Anselin
2002; Kim et al. 2016). Second, parameter estimates, such
as the regression coefficients and F-statistic, might be
biased (Dormann 2007a; Václavík et al. 2012). The inflation
or deflation of predictors’ coefficients will induce the over-
or under-estimation of their predictive power, respectively.
Finally, model misspecification, related to variable selec-
tion, remains an important issue (Austin 2002; Lichstein
et al. 2002; Miller et al. 2007; Václavík et al. 2012). The
presence of SAC in model residuals is typical of spatial
ecological data (Borcard et al. 1992; Lennon 2000;
Dormann 2007a; Kissling and Carl 2008; Bini et al. 2009;
Kim and Shin 2016); therefore, using these types of
data usually violates the assumption of independence
between pairs of observations, necessitating that the
effects of rSAC be accounted for (Diniz-Filho and Bini
2005; Bahn et al. 2006).

Species distribution modeling
The views of previous species distribution modeling
studies are mixed in regard to certain effects of SAC on
the outcomes of spatial predictive models. In some
articles (e.g., Lennon 2000; Dormann 2007a; Kim et al.
2016), the three statistical consequences briefly men-
tioned in the preceding section are well recognized. For
example, Lennon (2000) urged ecologists to start
integrating SAC in their modeling. Convinced of the ill
effects of failing to incorporate SAC in ecological data
modeling, he took a strong stance suggesting that such
effects can invalidate previous works that used standard
non-spatial models (e.g., ordinary least squares; OLS). In
other research (Dormann 2007a; Kim et al. 2016), the
voice was moderate. That is, despite the fact that
spatially explicit models generally outperform their non-
spatial counterparts (i.e., greater R2 or lower rSAC), the
final conclusions were rather tentative. In his review,
Dormann (2007a) estimated, on average, a positive co-
efficient shift in favor of a spatial model as high as 25%
and concluded that in certain methodological condi-
tions, such models showed an edge over non-spatial
models. Subsequent to Dormann’s (2007a) review, two
studies (Kim 2013; Kim et al. 2016) consistently witnessed
a better performance of spatially explicit models over
non-spatial ones. However, it was concluded that whether
that superiority holds true for any spatial methods,
sampling strategies or field designs remains to be seen. It
was suspected that whether data were collected randomly,
on a grid, in a nested or stratified fashion, or how densely
the samples are distributed might make a difference in the
modeling outcomes. As compelling and relevant as SAC
appears to be, only a minority of published studies in the
ecological field—for example, less than 20% (Dormann
2007a) or 3 out of 44 (Crase et al. 2014)—working with
spatial data have addressed the issue.
On the other hand, there are other studies (e.g.,

Diniz-Filho et al. 2003; Hawkins et al. 2007; Bini et al.
2009; Miller 2012) in which the abovementioned claims
were not agreed. To wit, the question concerning which
parameter estimates in non-spatial modeling (models that
do not account for SAC) are biased was not a critical
issue. For example, Hawkins et al. (2007) warned about
claiming the superiority of spatial models and the falseness
of non-spatial ones as they found no significant differences
between global OLS models and spatial models, especially
when using gridded data. For them, the assumption that
non-spatial models are automatically flawed, as argued by
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Lennon (2000), in comparison with spatial models was a
mistake. Moreover, changes in coefficients between spatial
and non-spatial models were mainly idiosyncratic and
depended on the type of method used (Bini et al. 2009),
which suggests that modelers should be explicit and
cautious in their claims. These conclusions were already
drawn in previous studies where non-spatial regression
models were found unbiased. Additionally, these conclu-
sions recommended that the scale factor be considered
when interpreting results (Hawkins et al. 2007). Therefore,
claiming that models that ignore SAC are flawed is
groundless (Diniz-Filho et al. 2003). In addition, mathe-
matical analyses show that neither coefficients of
spatial models nor those of non-spatial models are to-
tally unbiased; in fact, precision decreases for spatial
model coefficients as SAC increases (Miller 2012).

Justification
A substantial number of studies in biogeography and
macroecology have broadly covered the topic of SAC, but
little is known about how deeply those works have
discussed the case of rSAC. Previous studies suspect that
failing to include certain explanatory variables might be at
the heart of the problem (Crase et al. 2014). This problem,
when related to the endogenous rather than the external
type of SAC, remains unexplored. An effort to identify
potential missing variables and establish how much their
omission increases the level of rSAC would potentially
bring new knowledge and contribute to the SDM literature
body. Along with environmental and biotic missing predic-
tors, the type of sampling design will also be scrutinized.
Sampling design is often mentioned as having the ability to
potentially cause rSAC to increase (Lichstein et al. 2002;
Bini et al. 2009; Crase et al. 2014). This present paper
addresses sampling design in terms of sample size, data
type, sampling technique, and the effect of small scales in
particular. Analyzing data at very fine scales coupled with
the inclusion of important spatially autocorrelated missing
variables is believed to have the potential to significantly
reduce or even remove rSAC in species distribution
models. Assuming that environmental factors behave
differently at distinct spatial scales, Diniz-Filho et al. (2003)
suggest that the inclusion of relevant environmental factors
acting at each scale in a regression model would eventually
remove SAC from the residuals at different scales.
Our goal in this review article is to evaluate an umbrella

research question: Under what circumstances can the
magnitude of rSAC increase? This question is broken
down into the following three sub-questions:

1. What are the causes of rSAC?
2. How much do missing variables account for rSAC?
3. How do different sampling designs influence the

level of SAC in model residuals?
Completing this investigation is expected to accom-
plish the following: (1) establish the full picture of rSAC
in the existing literature of macroecological and bio-
geographical modeling and (2) serve as a foundation to
conduct further research on rSAC.

Articles search, selection, and categorization
In this review, we initially targeted articles from macro-
ecology and biogeography that dealt with SDM in which
SAC was explicitly incorporated. We used keywords
such as residual spatial autocorrelation, spatial auto-
correlation, ecological, or biogeographical, as well as
species distribution modeling, to search for relevant
articles via the Web of Science and Google Scholar
engines. We also selected additional articles quoted and
referred to by some of these original selections. Thus,
some of the studies reviewed in this paper were not
exactly from the macroecology and biogeography fields.
The subjects of these additional articles belonged to the
disciplines of hydrology, soil science, and geomor-
phology, but they still covered important aspects of SAC
in terms of methods, functions, history, and modeling.
As a result, we have chosen a total of 97 articles dating

from 1984 to 2017 (Table 1). These articles were carefully
reviewed and then categorized based on the level of detail
they discussed on rSAC. In the end, we attempted to
understand the conditions under which SAC occurs—and
magnifies—in model residuals.
In terms of approach, the articles reviewed were all

unique with respect to SAC modeling in geographical
ecology. However, SDM remained as the most studied
topic across the board (61% of the articles), followed by
habitat suitability modeling (22%) and methods (16%).
The remaining proportion discussed other aspects of
SAC modeling. The modeling included many species,
such as birds, plants, mammals, and reptiles. Here are
some proxies used as dependent variables: richness,
occurrence, abundance, presence and absence, occu-
pancy, composition, dispersal, diversity, and density. For
habitat suitability, some surrogates were niche suitability,
habitat distribution, climatic suitability, climatic forecast,
or predictability.

Potential sources of residual SAC in SDM
Reviews of the existing literature revealed that account-
ing for SAC in SDM still has a long way to go, even
though studies have increasingly strived to broadly
incorporate the effect of spatial dependence in investigat-
ing ecological and biogeographical processes over the last
three decades. We found that only a small proportion (less
than 20%) of ecological and biogeographical modelers
incorporated SAC in their research. This is due partly to
the fact that the need to incorporate SAC has yet to be-
come unanimous among modelers (Diniz-Filho et al. 2003;



Table 1 Literature review in macroecological and biogeographical modeling. SAC spatial autocorrelation, rSAC residual spatial
autocorrelation
Number Author Year Journal rSAC Subject

1 Bahn et al. 2006 Ecography Elaborate Bird distribution

2 Bini et al. 2009 Ecography Elaborate Spatial and non-spatial regression

3 Borcard et al. 1992 Ecology Elaborate Partialling out species abundance

4 Bonada et al. 2012 Journal of Biogeography Elaborate Richness and composition
invertebrates

5 Crase et al. 2012 Ecography Elaborate rSAC in mangrove species distribution

6 Crase et al. 2014 Global Change Biology Elaborate Mangrove species distribution and
forecast

7 Diniz-Filho et al. 2003 Global Ecology and Biogeography Elaborate Species richness of bird

8 Diniz-Filho and Bini 2005 Global Ecology and Biogeography Elaborate Bird species richness and SAC

9 Diniz-Filho et al. 2008 Global Ecology and Biogeography Elaborate Model selectin in mammal species

10 Dormann 2007a Global Ecology and Biogeography Elaborate Spatial and non-spatial models in
ecology

11 Griffith and
Peres-Neto

2006 Ecology Elaborate Eigenfunction in ecological modeling

12 Griffith 2000 Journal of Geographical
Systems

Elaborate Regression modeling of
geo-demographic data

13 Hawkins et al. 2007 Ecography Elaborate Analyzing coefficient shifts in bird
species richness

14 Kühn 2007 Diversity and Distributions Elaborate Plant species richness and
environmental correlates

15 Kim et al. 2013 Physical Geography Elaborate Multiple SAC in soil moisture and
landscape

16 Kim et al. 2016 Soil Science Society
of America Journal

Elaborate Multiple SAC in soil–landform
modeling

17 Kissling and Carl 2008 Global Ecology and Biogeography Elaborate SAC and model selection

18 Lichstein et al. 2002 Ecological Monographs Elaborate Models and breeding habitats of
songbirds

19 de Oliveira et al. 2012 Biodiversity Conservation Elaborate Climatic suitability of biome in climate
change

20 de Oliveira et al. 2014 Ecography Elaborate Ecological niche modeling of plant
species

21 Sheehan et al. 2017 Ecology and Evolution Elaborate Bird species habitat

22 Ortiz-Yusty et al. 2013 Caldesia Elaborate Species richness and climate

23 Pickup and
Chewings,

1986 Ecological Modelling Elaborate Prediction of erosion and deposition

24 Le Rest et al. 2014 Global Ecology and Biogeography Elaborate Variable selection in species
abundance

25 Revermann et al. 2012 Journal of Ornithology Elaborate Bird species habitat and climate
change

26 Václavík et al. 2012 Journal of Biogeography Elaborate Multi-scale SAC and invasive forest
pathogen distribution

27 Veloz 2009 Journal of Biogeography Elaborate Niche modeling and plant species
distribution

28 Wu and Zhang 2013 Applied Geography Elaborate Model comparison and occurrence
of cloud cover

29 Siesa et al. 2011 Biological Invasions Elaborate SAC and crayfish distribution

30 Piazzini et al. 2011 Journal of Herpetology Elaborate SAC and presence of reptile species

31 Ishihama et al. 2010 Ecological Resources Elaborate Distribution of herbaceous species

32 Record et al. 2013a, b Global Ecology and Biogeography Elaborate Plant species distribution projection and SAC

33 Naimi et al. 2011 Journal of Biogeography Elaborate SAC and species occurrence
modeling

34 Ficetola et al. 2012 Ecography Elaborate SAC and reptile species
dispersal
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Table 1 Literature review in macroecological and biogeographical modeling. SAC spatial autocorrelation, rSAC residual spatial
autocorrelation (Continued)
Number Author Year Journal rSAC Subject

35 Dormannn 2007b Ecological Modelling Elaborate SAC and species distribution

36 Wu et al. 2009 Ecological Modelling Elaborate SAC and landscape dynamics

37 Merckx et al. 2009 Ecological Modelling Elaborate SAC and prediction of marine
nematode biodiversity

38 Dowd et al. 2014 Ecological Applications Elaborate Coastal marine benthic
microfaunal distribution
modeling

39 Hefley et al. 2017a, b Ecology Elaborate Modeling SAC in ecological
data

40 Betts et al. 2006 Ecological Modelling Elaborate SAC and forest bird occurrence

41 Mets et al. 2017 Ecosphere Elaborate SAC in deforestation modeling

42 Tallowin et al. 2017 Journal of Biogeography Elaborate Terrestrial vertebrate richness

43 Hindrikson et al 2017 Biological Reviews Elaborate Wolf species richness and
distribution

44 Record et al. 2013a, b Ecosphere Elaborate Climate change prediction

45 Austin 2002 Ecological modelling Elaborate Species distribution modeling

46 Carl and Kühn 2007 Ecological Modelling Elaborate SAC in Species distribution

47 Dirnböck and
Dullinger

2004 Journal of Vegetation Science Elaborate Species distribution modeling

48 Zhang et al. 2009 Forest Science Elaborate Species model comparison

49 Gwenzi and Lefsky 2017 IEEE Journal of Selected
Topics in Applied Earth
Observations and Remote
Sensing

Elaborate SAC and plant biomass

50 Roth et al. 2016 American naturalist Elaborate Interactions among endangered
species

51 Davis et al. 2016 Ecosphere Elaborate Urban plant invasion

52 Mattsson et al. 2013 PLOS ONE Simple mention Species assemblage

53 Chun and Griffith 2011 Annals of the Associations
of American Geographers

Simple mention Network SAC and migration
flows

54 Cliff 1984 Journal of the American
Statistical Association

Simple mention Correlation estimation between
scores

55 Getis 2008 Geographical Analysis Simple mention History of SAC

56 Miller et al. 2007 Ecological Modelling Simple mention SAC and predictive vegetation
modeling

57 Lennon 2000 Ecography Simple mention SAC and geographical ecology

58 Zhu et al. 2012 Journal of Geographical Science Simple mention SAC and vegetation cover.

59 Poley et al. 2014 Journal of Biogeography Simple mention SAC and large mammals’
occupancy

60 Jackson et al. 2015 Biological Conservation Simple mention Prediction of bird species
habitat

61 Platts et al. 2008 Ecological Modelling Simple mention Model selection in tree
distribution

62 Hefley et al. 2017a, b Ecology Simple mention Functions in spatial ecological
modeling

63 Estrada and Rodriguez-Estrella 2016 Animal Conservation No mention Biodiversity-bird species

64 Ali et al. 2010 Water Resources Research No mention Soil moisture and topographical
modeling

65 Anselin and Bera 1998 Handbook of Applied Statistics No mention SAC and regression models

66 Santos et al. 2009 Canadian Journal of Zoology No mention SAC in pine species

67 Dorken et al. 2017 Journal of Ecology No mention Plant species density

68 Ennen et al. 2016 Canadian Journal of Zoology No mention Reptile pattern modeling

69 Weeks et al. 2017 River Research and Applications No mention Snail and aquatic vegetation

Gaspard et al. Journal of Ecology and Environment           (2019) 43:19 Page 5 of 11



Table 1 Literature review in macroecological and biogeographical modeling. SAC spatial autocorrelation, rSAC residual spatial
autocorrelation (Continued)
Number Author Year Journal rSAC Subject

70 Dronova et al. 2016 Remote Sensing No mention Bird species diversity

71 Anselin et al. 2006 Geographical Analysis No mention Spatial effects in environmental
economics

72 Augustin 2001 Journal of Applied Ecology No mention Succession in semi-natural vegetation

73 Chang et al. 2012 PLOS ONE No mention Genetic and bird species distribution

74 Seymour 2005 Journal of the American
Statistical Association

No mention Spatial data: theory and practice

75 Siderov 2005 Austral Ecology No mention SAC practice and theory

76 Hongoh et al. 2012 Applied Geography No mention Mosquito distribution

77 Miller 2012 Progress in Physical
Geography

No mention Species distribution modeling

78 Kleisner et al. 2010 Marine Ecology Progress Series No mention Pelagic fish modeling

79 Tarkhnishvili et al. 2012 Biological Journal of the
Linnean Society

No mention Distribution of forest species

80 Wiegand and Moloney 2004 Oikos No mention Point pattern analysis in ecology

81 Yu 2012 Ph.D. Dissertation No mention Tree growth modeling and seedling recruitment

82 Lloyd et al. 2005 Diversity and Distributions No mention SAC and Benthic invertebrates

83 Rodriguez et al. 2015 Journal Insect Conservation No mention Distribution of oak wasp species

84 Nicolaus et al. 2013 Journal Evolution Biology No mention Gastropod mollusk distribution

85 Warren et al. 2014 Trends in Ecology and Evolution No mention Species distribution modeling

86 Wieczorek and Bugaj-Nawrocka 2014 Agricultural and Forest Entomology No mention Ecological niche modeling

87 Epperson 2000 Ecological Modelling No mention Space-time and ecological
modeling

88 Wulder et al. 2007 Ecological Modelling No mention Forest growth modeling

89 Büchi et al. 2009 Ecological Modelling No mention Meta-community and species
distribution

90 Marmion et al. 2009 Ecological Modelling No mention Butterfly species distribution

91 Legendre 1993 Ecology No mention SAC trouble or paradigm in
ecology

92 Guénard et al. 2016 Ecosphere No mention Fish-spatial modeling

93 Estrada et al. 2016 PLOS ONE No mention Habitat suitability

94 Ingberman et al. 2016 PLOS ONE No mention Muriquis distribution

95 Ciccarelli and Bacaro 2016 Folia Geobotanica No mention Spatial modeling and species
diversity

96 Güler et al. 2016 Journal of Vegetation Science No mention Plant species richness

97 Komac et al. 2016 PLOS ONE No mention Habitat suitability
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Hawkins et al. 2007; Bini et al. 2009; Miller 2012). The
presence of SAC in ecological and biogeographical data
has long been identified (as far back as the late 1970s), and
statistical methods to address it were developed almost in
the same period (Dormann 2007a). For example, Legendre
(1993) defined and categorized the concept of SAC into
endogenous and exogenous SAC in the field of ecological
data modeling. However, modelers started substantially
publishing studies that integrate SAC after 2000. This real-
ity agrees with the reason why 92 out of the 97 articles we
reviewed were published in the new millennium. Some of
the earlier studies that acknowledged the effect of SAC
prior to 2000 include, but are not limited to, Borcard et al.
(1992) who looked at partialling out the total variance of
species abundance into spatial and non-spatial compo-
nents and Pickup and Chewings (1986) who investigated
the prediction of erosion and deposition in alluvial land-
scapes of central Australia.
These discussions explain why rSAC, as a subcategory

of SAC, remains relatively unexplored in ecological and
biogeographical modeling. We categorized the articles
into three groups (i.e., no mention, simple mention, and
elaborate) based on the level of details at which a discus-
sion is provided on rSAC (Table 2). In fact, 35 articles
(36%) never mentioned the presence or influence of
rSAC. The remaining 62 (simple mention plus elaborate)



Table 2 Summary of the reviewed articles with regard to the
level of detail they provided on residual spatial autocorrelation

Category No mention Elaborate Simple mention

Proportion 36% 53% 11%
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articles somehow mentioned rSAC. Only 51 of the
articles provided more in-depth discussions on the sub-
ject (i.e., the elaborate category which represents 53%).
The fact remains, however, that these levels of informa-
tion provided by the 62 articles are still insufficient for
estimating which factors possibly induced the occur-
rence of rSAC during modeling procedures. It is worth
noting that 11 (the simple mention) of these 62 articles
only referred to the term residual spatial autocorrelation
once or twice in their introductory sections. The
remaining 51 articles provided more detailed and
descriptive information about rSAC. Such details in-
cluded the definition of rSAC, its origin, methods and
suggestions on how to address it, and its quantification
using Moran’s I (Table 1). Below, we discuss five possible
mechanisms or factors that potentially drive rSAC in
ecological and biogeographical modeling.

Ecological data and processes
Conceptually speaking, SAC is likely to exist in any
spatial data because observations from close locations
are generally more related than would be expected on a
random basis (Kissling and Carl 2008). The interactions
between responses at these locations’ zone of spatial
influence result from, for example, contagious biotic
processes, such as dispersal, growth, mortality, spatial
diffusion, diseases, reproduction, and predation (Borcard
et al. 1992; Lichstein et al. 2002). These processes can
eventually create spatial patterns in species data without
the influence of other external environmental data
(Borcard et al. 1992). Furthermore, Kim (2013) men-
tioned the increase in size or a reduction of vegetation
as another contagious biological process that can explain
the presence of fine-scale intrinsic SAC in spatial envir-
onmental data (e.g., soil moisture). Another reason why
SAC occurs in ecological data is the diffusive property
across space in the movement of environmental and
biotic processes, whether it be on the surface of the
Earth or below the ground (Kim et al. 2016). Such
environmental factors distributed continuously across
the geographical space explain why, for example, species
composition is similar among neighboring locations, as
most species generally occupy the ranges that are greater
than the cell size under study (Diniz-Filho et al. 2003).
Consequently, Diniz-Filho et al. (2003) noted that using
coarse scales to explain species richness would indubit-
ably deemphasize variations at very fine scales. They
suggested the use of diffusive ecological processes that
act at small scales to capture information on species
composition. In fact, other subsequent studies (e.g.,
Václavík and Meentemeyer 2009) sought to capture
small-scale contagious processes leading to spatially
dependent distributions and thereby violating the assump-
tion of equilibrium between species and environmental
controls (Václavík et al. 2012). These studies used multiple
degrees of spatial dependence to investigate the effect of
dynamic contagious processes in empirical data. There-
fore, inherently, any field where such data are analyzed is
subject to having to address the issue of SAC induced by
contagious processes. In this context, spatial dependencies
will probably show up in models using ecological data and
processes (Kissling and Carl 2008; Bini et al. 2009;
Crase et al. 2014). Models using spatial data are not
only susceptible to having spatially autocorrelated re-
siduals as Revermann et al. (2012) noted. In particular,
working with grid data almost guarantees that SAC
patterns be observed in the errors (de Oliveira et al. 2012).
In some cases, this is labeled a mismatch between a
process unit and an observational unit.

Scale and distance
In fact, several studies have reiterated that rSAC is
closely related to distance. For Bini et al. (2009), rSAC
was stronger at smaller distances in most empirical data
sets. Some researchers have used terms similar to scale
and distance presenting the circumstances in which
model residuals show spatial dependencies. Lichstein
et al. (2002) mentioned first proximity or distance and
then defined the concept of appropriate neighborhood
size. For these authors, distance among samples was a
necessary condition for the presence of rSAC in regres-
sion models. Such patterns occurred within an “appro-
priate neighborhood size,” or the maximum distance at
which model residuals are autocorrelated. Therefore,
when spatial data are analyzed, an inappropriate spatial
resolution will often generate rSAC (Dormann 2007a). It
is clear that more works acknowledge the type of scale as
a determinant factor for rSAC. Crase et al. (2014)
suggested that most of the SAC occurred at small scales
(less than 1 km). It is worth pointing out that failing to
account for small-scale environmental factors (Diniz-Filho
et al. 2003) or only accounting for broad-scale spatial
structures (Diniz-Filho and Bini 2005) will result in
positive rSAC in species richness modeling at small scales.
Thus, all these local-scale spatial structures (Wu and
Zhang 2013) accumulated and caused spatial depen-
dencies in the residuals of, for example, bird richness
modeling (Bahn et al. 2006). Bahn et al. (2006) conceded
that rSAC disappeared when using environmental pre-
dictors at large scales (> 100 km). They also admitted that
the omission of important community-scale processes
constituted another crucial factor of spatial dependence.
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Missing variables
Variable selection is one of the characteristics that are
used to compare traditional non-spatial models to spatial
models which explicitly account for the presence of
SAC. One explanation of the differences between
non-spatial and spatial approaches in selecting variables
is that non-spatial models tend to recover the missing
spatial information by adding environmental variables
that happen to be spatially autocorrelated (Bahn et al.
2006). In fact, failing to select relevant localized, spatially
autocorrelated variables is one of the primary causes, if
not the first, of rSAC. Leaving out important spatially
autocorrelated predictors can directly lead to model
misspecification (Bini et al. 2009; Miller 2012), which
potentially generates rSAC and creates an instability
associated with Lennon (2000)’s “red shift” problem
(Bini et al. 2009). As supported by Bini et al. (2009),
whenever such unmodeled spatially dependent pre-
dictor variables are included in the model, the degree
of rSAC decreases. In contrast, when SAC is accounted
for as in the case of a spatially explicit model, the relative
importance likely decreases for spatially autocorrelated
independent variables. Certain predictors affect the
response of ecological and biogeographical processes only
at local scales. Conducting broad-scale modeling will
undermine such localized response variables, thus result-
ing in the creation of rSAC (Diniz-Filho et al. 2003).
Studies suggest that failing to include important variables
also causes positive rSAC, which may serve as an indicator
for model misspecification (Lichstein et al. 2002;
Diniz-Filho et al. 2008; Kissling and Carl 2008; Bini et al.
2009). Residual SAC is a sub-type of either exogenous or
endogenous SAC. Therefore, there will be a possibility
that residuals are also autocorrelated, provided that one of
these two types of SAC exists in the data, as corroborated
by Diniz-Filho and Bini (2005), Miller et al. (2007), Václa-
vík et al. (2012), and Crase et al. (2014).

Sampling design
Under this “sampling design” group is considered
sampling size, measurement, founder effect, sampling
scheme, and sampling intensity. Each one of these
factors is believed to lead to residual spatial dependencies
as stated by previous studies. Bini et al. (2009) observed
that a high level of rSAC is usually present in data sets with
many observations. On the other hand, Lichstein et al.
(2002) suggested that autocorrelated residuals can well be
caused by poorly measuring an important autocorrelated
predictor. In species assemblage data such as species
richness and proportion of endemic species, to name a few,
the sampling category is called “artifacts” in a sense that
they are not due to the environment but rather from a re-
searcher (Dormann 2007a; Crase et al. 2014). According to
these authors, these artifacts are difficult to correct, and
they eventually show rSAC. The artifacts are caused by
species-specific bias or different recorder density. As an ex-
ample, taxonomists may split plant species into more “spe-
cies” than common botanists would, or a data recording
team may sample one area more intensively than another,
creating a bias unrelated to the environment. Additionally,
a different sampling scheme would generate rSAC when
regions of a known occurrence are sampled with higher
intensity than regions of an unclear occurrence. Finally,
ecological interactions between species (e.g., competitive
exclusion and founder effects) in isolated habitat patches,
such as fragmented landscapes and lakes, will add to SAC
in assemblage data that are absent from individual species
distribution data (Dormann 2007a; Crase et al. 2014).

Assumptions and methodological approaches
Falsely assuming linearity between two factors, using a
wrong variable selection method, and ignoring the pre-
sence of non-stationarity in a data set can lead to model
residuals being spatially autocorrelated. As Bini et al.
(2009) noted, for example, fitting a linear model to a quad-
ratic distribution or response would result in the residuals
being spatially autocorrelated. Moreover, performing
model selection requires modelers to go through several
important steps including variable selection. Different
approaches are used in variable selection. Le Rest et al.
(2014) found that the Akaike information criteria, when
used as a metric to select variables in the presence of
rSAC, proved to pick up unnecessary variables to the
detriment of important predictors, thereby ignoring the
presence of structure in such residuals. Bini et al. (2009)
defined non-stationarity as the non-consistency in the
relationship between variables throughout the whole
extent of the data. Non-stationarity is less intuitive and
less used compared to SAC and has only lately been
incorporated in SDM (Miller 2012). The concept can be
viewed as the spatial variant of a constraint in correlation
and regression modeling known as the Simpson’s paradox
(the linear trend of a sub-group is reverse of that of the
overall group). It is the statistical formalization of spatial
heterogeneity, which defines uneven distribution across
space (like SAC, it is generally caused by sampling diffe-
rences, another process in different locations of the study
area or model misspecification such as missing variables).
Bini et al. (2009) observed that high rSAC is usually
present in data sets with high levels of non-stationarity.
Similarly, Lichstein et al. (2002) argued that misspecifying
a model form, such as assuming linearity when the
relationship is nonlinear, may lead to spatially autocorre-
lated residuals. According to Wu and Zhang (2013), rSAC
will probably result from linearity oversimplification. In
sum, all these authors agree that residual dependencies
may result from an assumption that one makes and the
methodological approach that one chooses.
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Conclusions
In macroecological and biogeographical modeling, multiple
facets of SAC have extensively been investigated. In fact,
incorporating SAC in modeling process, comparing spatial
and non-spatial modeling, and identifying the potential
consequences arising from the presence of spatial structure
are relatively well addressed in previous studies. There
seems to be a consensus that spatially explicit models in
most cases outperform non-spatial models that ignore the
effects of spatial dependence. However, understanding the
reason why such differences in model performance exist
and the circumstances under which they magnify has yet to
be investigated (Crase et al. 2014; Kim et al. 2016; Miralha
and Kim 2018). Most importantly, it is agreed that mo-
deling outcomes and inferences are most affected when
model residuals are spatially autocorrelated. There-
fore, there has been a sense of urgency and a need to
investigate rSAC in more detailed and explicit ways.
Our review of the major studies covering the topic of

SAC allowed us to identify the potential sources of
rSAC. In fact, a thorough review of the works reveals
that the nature of the data, missing autocorrelated
variables, scale, sampling design, and false methodological
assumptions constitute the primary causes of SAC in
model residuals. In addition to the causes of SAC, it
turned out that SDM and habitat suitability modeling in
birds, plants, mammals, and reptiles along with methods
are the most studied topics. Despite being somewhat
subjective, this categorization is an important finding,
considering that it provides a better understanding of the
circumstances under which model residuals are spatially
autocorrelated.
The lack of quantifiable data, however, prevented us

from assessing the magnitude to which rSAC is a real
issue in SDM. In our review, the proportion of papers
(64% including those elaborate and simple mention
categories; Table 2) that mentions rSAC for the most
part does so slightly and fails to contain quantitative
information that would in turn allow any estimations.
This review shows that rSAC in macroecological and
biogeographical models are mainly intrinsic as inherent
biotic processes drive the presence of spatial structure in
the errors. Thus, it suggests a need for future investi-
gations to aim at quantifying rSAC and analyzing its
augmentation patterns. It is worth examining the role
of missing variables, diverse sampling designs, and
types of data along with model misspecification in
inducing the presence of SAC in model residuals.
Therefore, using combinations of such factors at multiple
scales to model macroecological and biogeographical
processes is strongly recommended.
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