• Title/Summary/Keyword: Residual autocorrelation

Search Result 25, Processing Time 0.024 seconds

The Asymptotic Variance of the Studentized Residual Autocorrelations for a Generalized Random Coefficient Autoregressive Processes

  • Park, Sang-Woo;Cho, Sin-Sup;Hwang, Sun Y.
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.4
    • /
    • pp.531-541
    • /
    • 1997
  • The asymptotic distribution of residual autocorrelation functions from a generalized p-order random coefficient autoregressive process (GRCA(p)) is derived. To this end, we first describe the GRCA(p) models and then consider the normalised residuals after fitting the model. This result can be applied to the residual analysis for the diagonostic purpose.

  • PDF

Residual spatial autocorrelation in macroecological and biogeographical modeling: a review

  • Gaspard, Guetchine;Kim, Daehyun;Chun, Yongwan
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.191-201
    • /
    • 2019
  • Macroecologists and biogeographers continue to predict the distribution of species across space based on the relationship between biotic processes and environmental variables. This approach uses data related to, for example, species abundance or presence/absence, climate, geomorphology, and soils. Researchers have acknowledged in their statistical analyses the importance of accounting for the effects of spatial autocorrelation (SAC), which indicates a degree of dependence between pairs of nearby observations. It has been agreed that residual spatial autocorrelation (rSAC) can have a substantial impact on modeling processes and inferences. However, more attention should be paid to the sources of rSAC and the degree to which rSAC becomes problematic. Here, we review previous studies to identify diverse factors that potentially induce the presence of rSAC in macroecological and biogeographical models. Furthermore, an emphasis is put on the quantification of rSAC by seeking to unveil the magnitude to which the presence of SAC in model residuals becomes detrimental to the modeling process. It turned out that five categories of factors can drive the presence of SAC in model residuals: ecological data and processes, scale and distance, missing variables, sampling design, and assumptions and methodological approaches. Additionally, we noted that more explicit and elaborated discussion of rSAC should be presented in species distribution modeling. Future investigations involving the quantification of rSAC are recommended in order to understand when rSAC can have an adverse effect on the modeling process.

Noise Robust Text-Independent Speaker Identification for Ubiquitous Robot Companion (지능형 서비스 로봇을 위한 잡음에 강인한 문맥독립 화자식별 시스템)

  • Kim, Sung-Tak;Ji, Mi-Kyoung;Kim, Hoi-Rin;Kim, Hye-Jin;Yoon, Ho-Sub
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.190-194
    • /
    • 2008
  • This paper presents a speaker identification technique which is one of the basic techniques of the ubiquitous robot companion. Though the conventional mel-frequency cepstral coefficients guarantee high performance of speaker identification in clean condition, the performance is degraded dramatically in noise condition. To overcome this problem, we employed the relative autocorrelation sequence mel-frequency cepstral coefficient which is one of the noise robust features. However, there are two problems in relative autocorrelation sequence mel-frequency cepstral coefficient: 1) the limited information problem. 2) the residual noise problem. In this paper, to deal with these drawbacks, we propose a multi-streaming method for the limited information problem and a hybrid method for the residual noise problem. To evaluate proposed methods, noisy speech is used in which air conditioner noise, classic music, and vacuum noise are artificially added. Through experiments, proposed methods provide better performance of speaker identification than the conventional methods.

  • PDF

A Test for Autocorrelation in Dynamic Panel Data Models

  • Jung, Ho-Sung
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.11a
    • /
    • pp.167-173
    • /
    • 2005
  • This paper presents an autocorrelation test that is applicable to dynamic panel data models with serially correlated errors. The residual-based GMM t-test is a significance test that is applied after estimating a dynamic model by using the instrumental variable(IV) method and is directly applicable to any other consistently estimated residuals. Monte Carlo simulations show that the t-test has considerably more power than the $m_2$ test or the Sargan test under both forms of serial correlation (i.e., AR(1) and MA(1)).

  • PDF

A TEST FOR AUTOCORRELATION IN DYNAMIC PANEL DATA MODELS

  • Jung, Ho-Sung
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.4
    • /
    • pp.367-375
    • /
    • 2005
  • This paper presents an autocorrelation test that is applicable to dynamic panel data models with serially correlated errors. The residual-based GMM t-test is a significance test that is applied after estimating a dynamic model by using the instrumental variable (IV) method and is directly applicable to any other consistently estimated residuals. Monte Carlo simulations show that the t-test has considerably more power than the $m_2$ test or the Sargan test under both forms of serial correlation (i.e., AR(1) and MA(1)).

Multivariate Control Chart for Autocorrelated Process (자기상관자료를 갖는 공정을 위한 다변량 관리도)

  • Nam, Gook-Hyun;Chang, Young-Soon;Bai, Do-Sun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.3
    • /
    • pp.289-296
    • /
    • 2001
  • This paper proposes multivariate control chart for autocorrelated data which are common in chemical and process industries and lead to increase in the number of false alarms when conventional control charts are applied. The effect of autocorrelated data is modeled as a vector autoregressive process, and canonical analysis is used to reduce the dimensionality of the data set and find the canonical variables that explain as much of the data variation as possible. Charting statistics are constructed based on the residual vectors from the canonical variables which are uncorrelated over time, and therefore the control charts for these statistics can attenuate the autocorrelation in the process data. The charting procedures are illustrated with a numerical example and Monte Carlo simulation is conducted to investigate the performances of the proposed control charts.

  • PDF

A note on CUSUM design for autocorrelated processes (자기상관 공정에 대한 누적합관리도에서 설계모수 값의 결정)

  • Lee, Jae-June;Lee, Jong-Seon
    • Journal of Korean Society for Quality Management
    • /
    • v.36 no.4
    • /
    • pp.87-92
    • /
    • 2008
  • It is common to use CUSUM charts for detecting small level shifts in processes control, in which reference value(k) and decision interval(h) are the design parameters to be determined. To control process with autocorrelation, CUSUM charts could be applied to residuals obtained from fitting ARIMA models. However, constant level shifts in processes lead to varying mean shifts in residual processes and thus standard CUSUM charts may need to be modified. In this paper, we study the performance of CUSUM charts with various design parameters applied to autocorrelated processes, especially focussing on ARMA(1,1) models, and propose how they can be determined to get better performance in terms of the average run length.

Multioutput LS-SVR based residual MCUSUM control chart for autocorrelated process

  • Hwang, Changha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.523-530
    • /
    • 2016
  • Most classical control charts assume that processes are serially independent, and autocorrelation among variables makes them unreliable. To address this issue, a variety of statistical approaches has been employed to estimate the serial structure of the process. In this paper, we propose a multioutput least squares support vector regression and apply it to construct a residual multivariate cumulative sum control chart for detecting changes in the process mean vector. Numerical studies demonstrate that the proposed multioutput least squares support vector regression based control chart provides more satisfying results in detecting small shifts in the process mean vector.

Use of Space-time Autocorrelation Information in Time-series Temperature Mapping (시계열 기온 분포도 작성을 위한 시공간 자기상관성 정보의 결합)

  • Park, No-Wook;Jang, Dong-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.4
    • /
    • pp.432-442
    • /
    • 2011
  • Climatic variables such as temperature and precipitation tend to vary both in space and in time simultaneously. Thus, it is necessary to include space-time autocorrelation into conventional spatial interpolation methods for reliable time-series mapping. This paper introduces and applies space-time variogram modeling and space-time kriging to generate time-series temperature maps using hourly Automatic Weather System(AWS) temperature observation data for a one-month period. First, temperature observation data are decomposed into deterministic trend and stochastic residual components. For trend component modeling, elevation data which have reasonable correlation with temperature are used as secondary information to generate trend component with topographic effects. Then, space-time variograms of residual components are estimated and modelled by using a product-sum space-time variogram model to account for not only autocorrelation both in space and in time, but also their interactions. From a case study, space-time kriging outperforms both conventional space only ordinary kriging and regression-kriging, which indicates the importance of using space-time autocorrelation information as well as elevation data. It is expected that space-time kriging would be a useful tool when a space-poor but time-rich dataset is analyzed.

  • PDF

Performance Evaluation of $\bar{x}$ and EWMA Control Charts using Bootstrap Technique in the Presence of Correlation (상관관계의 존재하에서 붓스트랩 기법을 이용한 $\bar{x}$ 와 EWMA관리도의 수행도 평가)

  • Shon Han-Deak;Song Suh-Ill
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.365-370
    • /
    • 2002
  • In this study, according to MARMA(1,0) model which was suggested by Seppala, in case of existing autocorrelation in X control chart and EWMA control chart, the standard method and the non-parametric bootstrap method were compared and analysed using the bootstrap method which use the resampling prediction residual.

  • PDF