• Title/Summary/Keyword: Residual Layer Thickness

Search Result 115, Processing Time 0.035 seconds

Residual stresses on plasma sprayed zirconia coatings (플라즈마 용사법에 의한 지르코니아 코팅에서의 잔류응력에 대한 연구)

  • 류지호;강춘식
    • Journal of Welding and Joining
    • /
    • v.7 no.4
    • /
    • pp.46-55
    • /
    • 1989
  • Zirconia coatings are performed by the plasma spraying on the substrate of Al-Si alloy. In case of plasma sprayed ceramic coatings, it is important to control properly residual stress occurred during cooling process. Residual stress in coating layer varies with sprayed conditions and is influenced greatly by the coating layer thickness. Surface residual stress due to coating layer thickness is measured by X-ray diffraction method and the residual stress in coating layer is estimated by the deflection of coating layer when the restraint force in substrate was removed. When zirconia was coated on the substrate, tensile residual stress remains on zirconia coated surface layer. The tensile stress is increased to 0.35mm thickness and after 0.45mm thickness it is decreased abrouptly. A thick bond and composite coating reduce the zirconia surface stress and composite coating controls effectively the thick zirconia surface stress.

  • PDF

Prediction of Residual Layer Thickness of Large-area UV Imprinting Process (대면적 UV 임프린팅 공정에서 잔류층 두께 예측)

  • Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.79-84
    • /
    • 2013
  • Nanoimprint lithography (NIL) is the next generation photolithography process in which the photoresist is dispensed onto the substrate in its liquid form and then imprinted and cured into a desired pattern instead of using traditional optical system. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. Although one of the current major research trends of NIL is large-area patterning, the technical difficulties to keep the uniformity of the residual layer become severer as the imprinting area increases more and more. In this paper, with the rolling type imprinting process, a mold, placed upon the $2^{nd}$ generation TFT-LCD glass sized substrate($370{\times}470mm^2$), is rolled by a rubber roller to achieve a uniform residual layer. The prediction of residual layer thickness of the photoresist by rolling of the rubber roller is crucial to design the rolling type imprinting process, determine the rubber roller operation conditions-mpressing force & feeding speed, operate smoothly the following etching process, and so forth. First, using the elasticity theory of contact problem and the empirical equation of rubber hardness, the contact length between rubber roller and mold is calculated with consideration of the shape and hardness of rubber roller and the pressing force to rubber roller. Next, using the squeeze flow theory to photoresist flow, the residual layer thickness of the photoresist is calculated with information of the viscosity and initial layer thickness of photoresist, the shape of mold pattern, feeding speed of rubber roller, and the contact length between rubber roller and mold previously calculated. Last, the effects of rubber roller operation conditions, impressing force & feeding speed, on the residual layer thickness are analyzed with consideration of the shape and hardness of rubber roller.

The added carbon effect on residual stress in ion-nitriding (ION질화에 있어 첨가 탄소량이 잔류응력에 미치는 영향)

  • 김희송;강명순
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.35-46
    • /
    • 1982
  • This paper deals with residual stress characteristics of ion-nitrided metal which is primarilly concerned with the effects of added carbon content in gas atmosphere. A small optimal amount of carbon content in gas atmosphere increase compound layer thickness, as well as to increase diffusion layer thickness and hardness. The residual stress and deflection of the specimens was measured in various elevated temperature at the surface of ion-nitrided metal and the internal stress distribution was calculated. It is found that compressive residual stress at the compound layer is largest at the compound layer, and decreases as the depth from the surface increases.

  • PDF

A Study on the expectation of residual layer thickness in roller pressing imprint process (롤러 가압 임프린트 공정에서 잔류막 두께 예측에 관한 연구)

  • Cho, Young Tae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.104-109
    • /
    • 2013
  • In order to apply nano imprint technology in large area process, roller pressing is promising because of its low cost and high productivity. When pressing mold by roller, liquid resin is locally squeezed between mold and substrate. In this study, the main focus is to understand which process parameter affects residual layer. To do this, a simple analytical model was introduced. Especially, we consider the aspect ratio of patterns as essential cause of variation of the thickness in the equation. As a result, when the aspect ratio of pattern in the mold increases, the thickness of residual layer also increases. In conclusion, we show that the uniformity of residual layer could be accomplished by the control of velocity and pressing force in roller pressing imprint process.

Numerical Analysis of Effects of Velocity Inlet and Residual Layer Thickness of Resist on Bubble Defect Formation (레지스트 잔류층 두께와 몰드 유입속도가 기포결함에 미치는 영향에 대한 수치해석)

  • Lee, Woo Young;Kim, Nam Woong;Kim, Dong Hyun;Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.61-66
    • /
    • 2015
  • Recently, the major trends of NIL are high throughput and large area patterning. For UV NIL, if it can be proceeded in the non-vacuum environment, which greatly simplifies tool construction and greatly shorten process times. However, one key issue in non-vacuum environment is air bubble formation problem. In this paper, numerical analysis of bubble defect of UV NIL is performed. Fluent, flow analysis focused program was utilized and VOF (Volume of Fluid) skill was applied. For various resist-substrate and resist-mold angles, effects of velocity inlet and residual layer thickness of resist on bubble defect formation were investigated. The numerical analyses show that the increases of velocity inlet and residual layer thickness can cause the bubble defect formation, however the decreases of velocity inlet and residual layer thickness take no difference in the bubble defect formation.

Stress Analysis in Cooling Process for Thermal Nanoimprint Lithography with Imprinting Temperature and Residual Layer Thickness of Polymer Resist

  • Kim, Nam Woong;Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.68-74
    • /
    • 2017
  • Nanoimprint lithography (NIL) is a next generation technology for fabrication of micrometer and nanometer scale patterns. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. Up to now there have been a lot of researches on thermal NIL, but most of them have been focused on polymer deformation in the molding process and there are very few studies on the cooling and demolding process. In this paper a cooling process of the polymer resist in thermal NIL is analyzed with finite element method. The modeling of cooling process for mold, polymer resist and substrate is developed. And the cooling process is numerically investigated with the effects of imprinting temperature and residual layer thickness of polymer resist on stress distribution of the polymer resist. The results show that the lower imprinting temperature, the higher the maximum von Mises stress and that the thicker the residual layer, the greater maximum von Mises stress.

  • PDF

Evaluation of the Residual Stress with respect to Supporting Type of Multi-layer Thin Film for the Metallization of Pressure Sensor (압력센서의 배선을 위한 다층 박막의 지지조건 변화에 따른 잔류응력 평가)

  • 심재준;한근조;김태형;한동섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1537-1540
    • /
    • 2003
  • MEMS technology with micro scale is complete system utilized as the sensor. micro electro device. The metallization of MEMS is very important to transfer the power operating the sensor and signal induced from sensor part. But in the MEMS structures local stress concentration and deformation is often happened by geometrical shape and different constraint on the metallization. Therefore. this paper studies the effect of supporting type and thickness ratio about thin film thickness of the substrate thickness for the residual stress variation caused by thermal load in the multi-layer thin film. Specimens were made from materials such as Al, Au and Cu and uniform thermal load was applied, repeatedly. The residual stress was measured by FEA and nano-indentation using AFM. Generally, the specimen made of Al induced the large residual stress and the 1st layer made of Al reduced the residual stress about half percent than 2nd layer. Specimen made of Cu and Au being the lower thermal expansion coefficient induce the minimum residual stress. Similarly the lowest indentation length was measured in the Au_Cu specimen by nano-indentation.

  • PDF

Study on the Formation of Residual Layer Thickness by Changing Magnitude and Period of UV Imprinting Pressure (UV임프린트 공정에서 임프린팅 가압력 및 가압시간에 따른 레진 잔막 두께형성에 대한 실험연구)

  • Shin, Dong-Hyuk;Jang, Si-Youl
    • Tribology and Lubricants
    • /
    • v.26 no.5
    • /
    • pp.297-302
    • /
    • 2010
  • This study is focused on the resin layer formation of UV imprinting process by changing imprinting pressure and period. The mold shape is made for the process of window open over the pattern transfer area and the imprinting period is assigned as the time just before the UV light curing. The residual layer is measured by changing the imprinting period and pressure magnitude, and the measured data of residual layer provides useful information for the design of the process conditions of imprinting processes.

A Study on the Mechanical Properties and Residual Stresses of the Thermally Sprayed Alumina Ceramic Coating Layer (알루미나 세라믹(Alumina Ceramic) 코팅층의 기술적인 특성과 잔류응력의 해소에 관한 연구)

  • 김영식
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.88-97
    • /
    • 1996
  • The pupose of this study is to improve the mechanical properies and to evaluate the residual stresses of flame-sprayed Alumina ceramic coating layer. The first work in this study is to investigate the effects of strengthening heat treatments on the mechanical properties of coating layer. Strengthening heat treatments for sprayed specimens were carried out in vaccum furnace. The mechanical properties such as microhardness, thermal shock resistance, adhesive strength and erosion resistance were tested for the sprayed specimens after strengthening heat treatments. And it was clear that the mechanical properties of coating layer were much improved by strengthening heat treatments. The second work in this study is to evalute the residual stresses in coating lsyer by numerical analysis. FDM and FEM were used to analyze temperature distribution and residul stresses in coating layer. It was proved that are tensile stresses in coating layer and that residual stresses can be controlled by the appropriate selection of the spraying parameters such as preheat temperature, coating thickness and bond coat thickness.

  • PDF

The Minimization of Residual Layer Thickness by using optimized dispensing method in UVnanoimprint Lithography Process (UV 나노임프린트 리소그래피 공정에서 레지스트 도포의 최적화를 통한 잔류층 두께의 최소화)

  • Kim K.D.;Jeong J.H.;Sim Y.S.;Lee E.S.;Kim J.H.;Cho Y.K.;Hong S.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.633-636
    • /
    • 2005
  • Imprint lithography is a promising method for high-resolution and high-throughput lithography using low-cost equipment. As with other nanoimprint methods, ultraviolet-nanoimprint lithography (UV-NIL) resolution appears to be limited only by template resolution, and offers a significant cost of ownership reduction when compared to other next generation lithography (NGL) methods such as EUVL and 157 nm lithography. The purpose of this paper is to suggest optimum values of control parameters of Imprio 100 manufactured by Molecular Imprint, Inc., which is the first commercially available UV-NIL tool, for sound nanoimprint. UV-NIL experiments were performed on Imprio 100 to find dispensing recipe for avoiding air entrapment. Dispensing recipe related to residual layer thickness and uniformity was optimized and 40 nm thick residual layer was achieved.

  • PDF