• Title/Summary/Keyword: Residual Layer

Search Result 661, Processing Time 0.027 seconds

Measurements of Residual Stress in Nitrocarburised Layer Formed in Hot Work Tool Steel (열간가공 공구강에 형성된 침질탄화층의 잔류응력 측정)

  • Oh, Do-Won;Park, Ki-Won;Lee, Jun-Boum;Lee, Sang-Yun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.305-314
    • /
    • 1998
  • This study has been performed to investigate into some effects of various amounts of $CO_2$ and CO gas added to the $50%NH_3-N_2$ based gas atmosphere on microstructure, hardness, chemical analysis and residual stress in the compound and diffusion layer of AISI H13 treated by gaseous nitrocarburising process. The compound layer formed in the surface is composed of mainly ${\varepsilon}-Fe_3$(N,C) and small amount of ${\gamma}^{\prime}-Fe_4N$ and cementite. The maximum hardness value obtainable from H13 steel is shown to be 1200 Hv and the effecvtive hardening depth increases with increasing CO content from 1% to 4%. In the case of CO content over 4%, however, it decreases with increasing CO content. The composition profiles of nitrogen and carbon are found to be within the ${\varepsilon}$-phase field located above the ${\varepsilon}+{\gamma}^{\prime}$ phase field in the Fe-N-C diagram. It is shown that the maximum value of compressive residual stress of H13 steel treated in atmospheres of $50%NH_3-(2,4)%CO_2-N_2-CO$ gas mixture is $48kg/mm^2$ and the depth to which residual stress is in Compressive state is $90{\mu}m$ for the atmosphere $50%NH_3-45%N_2-4%CO_2-1%CO$ gas mixture. It is consequently important to control the maximum value and size of compressive residual stress region in order to obtain desirable mechanical properties.

  • PDF

Temperature thread multiscale finite element simulation of selective laser melting for the evaluation of process

  • Lee, Kang-Hyun;Yun, Gun Jin
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.1
    • /
    • pp.31-51
    • /
    • 2021
  • Selective laser melting (SLM), one of the most widely used powder bed fusion (PBF) additive manufacturing (AM) technology, enables the fabrication of customized metallic parts with complex geometry by layer-by-layer fashion. However, SLM inherently poses several problems such as the discontinuities in the molten track and the steep temperature gradient resulting in a high degree of residual stress. To avoid such defects, thisstudy proposes a temperature thread multiscale model of SLM for the evaluation of the process at different scales. In microscale melt pool analysis, the laser beam parameters were evaluated based on the predicted melt pool morphology to check for lack-of-fusion or keyhole defects. The analysis results at microscale were then used to build an equivalent body heat flux model to obtain the residual stress distribution and the part distortions at the macroscale (part level). To identify the source of uneven heat dissipation, a liquid lifetime contour at macroscale was investigated. The predicted distortion was also experimentally validated showing a good agreement with the experimental measurement.

Energy Efficient Cross Layer Multipath Routing for Image Delivery in Wireless Sensor Networks

  • Rao, Santhosha;Shama, Kumara;Rao, Pavan Kumar
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1347-1360
    • /
    • 2018
  • Owing to limited energy in wireless devices power saving is very critical to prolong the lifetime of the networks. In this regard, we designed a cross-layer optimization mechanism based on power control in which source node broadcasts a Route Request Packet (RREQ) containing information such as node id, image size, end to end bit error rate (BER) and residual battery energy to its neighbor nodes to initiate a multimedia session. Each intermediate node appends its remaining battery energy, link gain, node id and average noise power to the RREQ packet. Upon receiving the RREQ packets, the sink node finds node disjoint paths and calculates the optimal power vectors for each disjoint path using cross layer optimization algorithm. Sink based cross-layer maximal minimal residual energy (MMRE) algorithm finds the number of image packets that can be sent on each path and sends the Route Reply Packet (RREP) to the source on each disjoint path which contains the information such as optimal power vector, remaining battery energy vector and number of packets that can be sent on the path by the source. Simulation results indicate that considerable energy saving can be accomplished with the proposed cross layer power control algorithm.

The Relation of Cross-sectional Residual Current and Stratification during Spring and Neap Tidal Cycle at Seokmo Channel, Han River Estuary Located at South Korea (대.소조기시 한강하구 석모수로에서 단면 잔차류와 성층간의 관계 연구)

  • Choi, Nak-Yong;Yoon, Byung-Il;Kim, Jong-Wook;Song, Jin-Il;Lim, Eun-Pyo;Woo, Seung-Bhum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.3
    • /
    • pp.149-158
    • /
    • 2012
  • This study analyzed cross-sectional variations in residual current and strengths of stratification by observing cross-sectional velocity and salinity during spring tide and neap tide, respectively, for continuous 13-hour periods at 2 observation lines at northern and southern end of Seokmo Channel, which is located west of Ganghwado. Salinity distribution of channel depends on not only neap and spring tide but also impact of salinity. The residual current component was obtained by removing $M_2$ and $M_4$ tidal components that were extracted using the least squares method on 13-hour velocity component. Cross-section of residual velocity at northern and southern end of Seokmo Channel exhibited southward residual components at channel's surface layer, but northward residual current was observed at channel's bottom layer, clearly showing a 2-layer tidal circulation between surface and bottom layers. The variation in location of appearing northward residual current according to changes in spring and neap tidal cycle and its correlation with stratification were analyzed using the Richardson number and Simpsonhunter index. At northern and southern end of Seokmo Channel, northward residual current appears in the location where Richardson number is large, Simpson-hunter index appears as a value greater than 4.

A Study on the Filling Process and Residual Layer Formation in Nanoimprint Lithography Process (나노임프린트 공정에서의 충전과정과 잔류층 형성에 관한 연구)

  • Lee, Ki-Yeon;Kim, Kug-Weon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.3835-3840
    • /
    • 2012
  • Nanoimprint lithography (NIL) is an emerging technology enabling cost-effective and high-throughput nanofabrication. Recently a lot of research for the nanoimprint have been carried out, but almost are about merely experimental result relating to the material operation and the imprint fabrication, and numerical analysis relating to the understanding of the imprint process with R&D level. In this paper, the viscoelasticity analysis model is developed using the finite element method. With this model, the filling process and residual layer formation in nanoimprint are analyzed, which is evaluated by a nanoimprint experiment.

Fatigue Fracture Behavior in Super-Rapid induction Quenched Spheroidal Graphite Cast Iron (고주파유도로를 이용한 초급속열처리 구상흑연주철의 피로파괴특성)

  • Ji, Jeung-Keun;Kim, Jin-Hak;Kim, Min-Gun
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.25-29
    • /
    • 1999
  • Rotary bending fatigue tests were carried out to investigate the fatigue behavior of high performance ductile cast iron experienced super rapid induction heat treatment. The effect of super rapid induction treatment on fatigue limit was experimentally examined with the special focus on the variation surface microstructure and the fatigue crack initiation and propagation through fractography. Main results obtained are as follows. By super rapid induction treatment in FCD500, the martensite structure obtained through conventional quenching heat treatment was confirmed on the specimen surface. The fatigue crack initiation in the hardened surface layer was restricted by the martensite structure and compressive residual stress. Thus, it could be interpreted that the initiation stress would be increased by the improvement of surface structure. The fatigue crack propagation in the hardened layer was retarded by the presence of the globular shape martensite around the graphite nodule and compressive residual stress. The crack propagation path has shown zigzag pattern in the hardened surface layer.

  • PDF

A three dimensional numerical model of tide and tidal current in the bay of Cheonsu in Korea

  • Moon Seup Shin;Tet
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1998.05a
    • /
    • pp.632-637
    • /
    • 1998
  • The purpose of this study of this study is to find tide and tidal current variation by three dimensional numerical model of tide and tidal current in the bay of Cheonsu in Korea. On the basis of the observed data on water temperature and salinity data and wind data of summer(July) in the bay of Cheonsu in Korea, water circulation in the bay of Cheonsu is investigated with use of a robust diagnostic numerical model, including calculated co-range and co-tidal charts of M2 tide are similar to the observed ones. The residual flow Pattern at the surface layer during summer formed clockwise circulation in the front coastal the dike of the Sosam A zone(Ganwor island) and Taeju island. The residual flow pattern at the 15m layer during formed clockwise circulation in the front Taeju island. The residual flow Pattern at the surface layer formed anti-clockwise circulation in the upper Sangmok and Naepasu island.

  • PDF

Soft Mold Deformation of Large-area UV Impring Process (대면적 UV 임프린팅 공정에서 유연 몰드의 변형)

  • Kim, Nam-Woong;Kim, Kug-Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.53-59
    • /
    • 2011
  • Recently there have been considerable attentions on nanoimprint lithography (NIL) by the display device and semiconductor industry due to its potential abilities that enable cost-effective and high-throughput nanofabrication. Although one of the current major research trends of NIL is large-area patterning, the technical difficulties to keep the uniformity of the residual layer become severer as the imprinting area increases more and more. In this paper we focused on the deformation of the $2^{nd}$ generation TFT-LCD sized ($370{\times}470mm^2$) large-area soft mold in the UV imprinting process. A mold was fabricated with PDMS(Poly-dimethyl Siloxane) layered glass back plate(t0.5). Besides, the mold includes large surrounding wall type protrusions of 1.9 mm width and the via-hole(7 ${\mu}m$ diameter) patterend area. The large surrounding wall type protrusions cause the proximity effect which severely degrades the uniformity of residual layer in the via-hole patterend area. Therefore the deformation of the mold was calculated by finite element analysis to assess the effect of large surrounding wall type protrusions and the flexiblity of the mold. The deformation of soft mold was verified by the measurements qualitatively.

A study of seasonal variation of the residual flow before and after Saemangeum reclamation (새만금간척전후의 잔차류의 계절변화에 관한연구(농지조성 및 농어촌정비))

  • 신문섭
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.47-53
    • /
    • 2000
  • Saemangeum coastal area is being constructed the 33km sea dike and 40,000ha reclamation area. The purpose of this study is to find the residual circulations in spring before and after the dike construction by a robust diagnostic and prognostic numerical model. Heat flux at the sea surface in May was adopted on the basis of the daily inflow of solar radiation at the earth surface, assuming an average atmospheric transmission and no clouds, as a function of latitude and time of year(George L.P.,J. E. William,1990). The discharge from the Geum, the Mankyung and the Dongjin rivers was adopted on the basis of experience formula of river flow in May(The M. of C.,Korea, 1993). Water temperature and salinity along the open boundaries are obtained from the results of field observations. The results of spring of the residual flow in the Saemangeum coastal area by a prognostic numerical model lead to the following conclusions: Water temperature in spring is the highest, salinity is the lowest and density is the lowest at the upper layer near the coast after the dike construction. The flow pattern at the upper layer during spring is anti-clockwise circulation between Wi and Shinsi islands. The flow pattern at the lower layer is clockwise circulation between Wi and Shinsi islands.

  • PDF

Study on Thermal behavior of Flexible CIGS Thin Film Solar Cell on Fe-Ni Alloy Substrates using Finite Element Analysis (유한요소해석을 이용한 CIGS 박막 태양전지용 Fe-Ni 합금 기판재 열적 거동 연구)

  • Han, Yun-Ho;Lee, Min-Su;Kim, Dong-Hwan;Yim, Tai-Hong
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.1
    • /
    • pp.23-26
    • /
    • 2015
  • What causes the transformation of a solar cell is the behavior difference of thermal expansion occurred between the substrate and the layer of semiconductor used in the solar cell. Therefore, the substrate has to possess a behavior of thermal expansion that is similar with that of semiconductor layer. This study employed electroforming to manufacture Fe-Ni alloy materials of different compositions. To verify the result from a finite element analysis, a two-dimensional Mo substrate was calculated and its verification experiment was conducted. The absolute values from the finite element analysis of Mo/substrate structure and its verification experiment showed a difference. However, the size of residual stress of individual substrate compositions had a similar tendency. Two-dimensional CIGS/Mo/$SiO_2$/substrate was modeled. Looking into the residual stress of CIGS layer occurred while the temperature declined from $550^{\circ}C$ to room temperature, the smallest residual stress was found with the use of Fe-52 wt%Ni substrate material.