• Title/Summary/Keyword: Research reactor

Search Result 3,450, Processing Time 0.031 seconds

TASK TYPES AND ERROR TYPES INVOLVED IN THE HUMAN-RELATED UNPLANNED REACTOR TRIP EVENTS

  • Kim, Jaew-Han;Park, Jin-Kyun
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.615-624
    • /
    • 2008
  • In this paper, the contribution of task types and error types involved in the human-related unplanned reactor trip events that have occurred between 1986 and 2006 in Korean nuclear power plants are analysed in order to establish a strategy for reducing the human-related unplanned reactor trips. Classification systems for the task types, error modes, and cognitive functions are developed or adopted from the currently available taxonomies, and the relevant information is extracted from the event reports or judged on the basis of an event description. According to the analyses from this study, the contributions of the task types are as follows: corrective maintenance (25.7%), planned maintenance (22.8%), planned operation (19.8%), periodic preventive maintenance (14.9%), response to a transient (9.9%), and design/manufacturing/installation (6.9%). According to the analysis of the error modes, error modes such as control failure (22.2%), wrong object (18.5%), omission (14.8%), wrong action (11.1 %), and inadequate (8.3%) take up about 75% of the total unplanned trip events. The analysis of the cognitive functions involved in the events indicated that the planning function had the highest contribution (46.7%) to the human actions leading to unplanned reactor trips. This analysis concludes that in order to significantly reduce human-induced or human-related unplanned reactor trips, an aide system (in support of maintenance personnel) for evaluating possible (negative) impacts of planned actions or erroneous actions as well as an appropriate human error prediction technique, should be developed.

Verification of a novel fuel burnup algorithm in the RAPID code system based on Serpent-2 simulation of the TRIGA Mark II research reactor

  • Anze Pungercic;Valerio Mascolino ;Alireza Haghighat;Luka Snoj
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3732-3753
    • /
    • 2023
  • The Real-time Analysis for Particle-transport and In-situ Detection (RAPID) Code System, developed based on the Multi-stage Response-function Transport (MRT) methodology, enables real-time simulation of nuclear systems such as reactor cores, spent nuclear fuel pools and casks, and sub-critical facilities. This paper presents the application of a novel fission matrix-based burnup methodology to the well-characterized JSI TRIGA Mark II research reactor. This methodology allows for calculation of nuclear fuel depletion by combination and interpolation of RAPID's burnup dependent fission matrix (FM) coefficients to take into account core changes due to burnup. The methodology is compared to experimentally validated Serpent-2 Monte Carlo depletion calculations. The results show that the burnup methodology for RAPID (bRAPID) implemented into RAPID is capable of accurately calculating the keff burnup changes of the reactor core as the average discrepancies throughout the whole burnup interval are 37 pcm. Furthermore, capability of accurately describing 3D fission source distribution changes with burnup is demonstrated by having less than 1% relative discrepancies compared to Serpent-2. Good agreement is observed for axially and pin-wise dependent fuel burnup and nuclear fuel nuclide composition as a function of burnup. It is demonstrated that bRAPID accurately describes burnup in areas with high gradients of neutron flux (e.g. vicinity of control rods). Observed discrepancies for some isotopes are explained by analyzing the neutron spectrum. This paper presents a powerful depletion calculation tool that is capable of characterization of spent nuclear fuel on the fly while the reactor is in operation.

A Short Review on the Mechanical and Thermal Processes for Underwater Cutting of Metal Structures (금속 구조물의 수중 절단을 위한 기계적 열적 공정의 특징 분석)

  • Mun, Do Yeong;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.121-133
    • /
    • 2020
  • Underwater cutting has a different mechanism than dry cutting, and there are more restrictions than benefits. Due to these constraints, research and development of underwater cutting has been very limited. At present, reactor dismantling is emerging as an important task worldwide, and reactor pressure containers, a key part of the reactor, are decommissioned based on underwater cutting. Reactor pressure containers are high-level radioactive waste, which is one of the main goals of today, such as to bridge the gap between environmental, safety, and cutting performance; hence, a process suitable for cutting should be applied. Therefore, many studies are being conducted on underwater cutting in connection with the dismantling of nuclear reactors in various areas in order to find appropriate processes. This paper first introduces the core technology of underwater cutting processes and discusses various processes. The emphasis is then placed on the adequacy of the reactor dismantling application. More specifically, we examine the suitability for the mechanical and thermal cutting processes, respectively, to find a solution suitable for dismantling a reactor. We discuss how each solution can sufficiently perform the specified functions at each stage of reactor dismantling and suggest that these processes can perform all of the work of underwater cutting.

Effects of Reactor Type on the Economy of the Ethanol Dehydration Process: Multitubular vs. Adiabatic Reactors

  • Yoo, Kee-Youn
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.467-479
    • /
    • 2021
  • Abstract: A kinetic model was developed for the dehydration of ethanol to ethylene based on two parallel reaction pathways. Kinetic parameters were estimated by fitting experimental data of powder catalysts in a lab-scale test, and the effectiveness factor was determined using data from pellet-type catalysts in bench-scale experiments. The developed model was used to design a multitubular fixed-bed reactor (MTR) and an adiabatic reactor (AR) at a 10 ton per day scale. The two different reactor types resulted in different process configurations: the MTR consumed the ethanol completely and did not produce the reaction intermediate, diethyl ether (DEE), resulting in simple separation trains at the expense of high equipment cost for the reactor, whereas the AR required azeotropic distillation and cryogenic distillation to recycle the unreacted ethanol and to separate the undesired DEE, respectively. Quantitative analysis based on the equipment and annual energy costs showed that, despite high equipment cost of the reactor, the MTR process had the advantages of high productivity and simple separation trains, whereas the use of additional separation trains in the AR process increased both the total equipment cost and the annual energy cost per unit production rate.

Interactive graphic simulation of research nuclear reactor dismantling process (연구용원자로 원격해체공정의 그래픽 전산모사)

  • 박영수;윤지섭;오원진;홍순혁
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.848-851
    • /
    • 1997
  • A graphic simulation program is developed to assimilate the remote dismantling process of research nuclear reactors. This program makes extensive use of a commercial robot graphic instruction program. Firstly, a realistic graphic model of research reactors are built along with various dismantling equipments. Using the graphic instruction languages provided by IGRIP, then, a graphic process simulation program is developed that operates interactively with the user. Consequently, it is made possible for a process designer to visualize an arbitrary dismantling sequence and interactively modify the process. It is expected that the developed system will be utilized as an effective operator aid in both design and execution phases of remote dismantling of research reactor.

  • PDF

Hydrogen production using high temperature reactors: an overview

  • Deokattey, Sangeeta;Bhanumurthy, K.;Vijayan, P.K.;Dulera, I.V.
    • Advances in Energy Research
    • /
    • v.1 no.1
    • /
    • pp.13-33
    • /
    • 2013
  • The present work is an attempt to provide an overview, about the status of R&D and current trends in Hydrogen Production using High Temperature Reactors. Bibliographic references from the INIS database, the Science Direct database and the NTIS database were downloaded and analyzed. Ten year data on the subject, published between 2001 and 2010, was selected for the study. Appropriate qued ry formulations on these databases, resulted in the retrieval of 621 unique bibliographic records. Using the content analysis method, all the records were analyzed. Part One of the analysis details Scientometric R&D indicators, Part Two is a subject-based analysis, grouped under: A. International Initiatives and Programmes for Hydrogen Production; B. European R&D initiatives for Hydrogen production; C. National Initiatives and Programmes for Nuclear Hydrogen Production; D. Reactor Technologies for Nuclear Hydrogen production; E. Fuel Developments; F. Hydrogen Production Processes using HTRs and G. Materials Consideration for Nuclear Hydrogen Production. The results of this analysis are summarized in the study.

Single-phase Resonant Inverter using SiC Power Modules for a Compact High-Voltage Capacitive Coupled Plasma Power Supply

  • Tu, Vo Nguyen Qui;Choi, Hyunchul;Kim, Youngwoo;Lee, Changhee;Yoo, Hyoyol
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.85-86
    • /
    • 2014
  • The paper presents a power supply of atmospheric-pressure plasma reactor based on SiC (Silicon Carbide) MOSFET resonant inverter. Thanks to the capacitive characteristic of capacitive coupling plasma reactor type, the LC series resonant inverter had been applied to take advantages of this topology with the implementation of SiC MOSFET power modules as switching power devices. Designation of gate driver for SiC MOSFET had been introduced by this paper. The 5kVp, 5kW power supply had also been verified by experimental results.

  • PDF

Education and Training Program using HANARO

  • Seo, Kyung-Won;Han, Eun-Young
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.4
    • /
    • pp.231-233
    • /
    • 1999
  • This report will introduce the epitome about the subject, HANARO (Hi-flux Advanced Neutron Application Reactor designed by KAERI in early 1995) Utilization Education Training Program Development and Operation, which is one of the nuclear research basic expansion businesses executed from 1999. 12. to strengthen the usage of HANARO. This program consists of the basic reactor experiments program for university students who have specialty of nuclear and other engineering, and the special research education program for faculties from universities and researchers from industrial fields. Principle lessons are reactor operation, radioisotope production, neutron activation analysis, neutron radiography, radiation shield (health physics), nuclear fuel combustion measurement by gamma scanning arrangement, and CNS (Compact Nuclear Simulator) and so on.

  • PDF