• Title/Summary/Keyword: Research Facility

Search Result 4,470, Processing Time 0.039 seconds

A Study on the model found of the duty factor whom follows in old person welfare facility worker holding office duration and organized performance research (노인복지시설 종사자 재직기간에 따른 직무요인, 조직성과의 모형정립에 관한 연구)

  • Cho, Woo-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.233-239
    • /
    • 2010
  • The research which sees the fact that about model found of the duty factor whom follows in old person welfare facility worker holding office duration and organized performance researches in purpose. From theoretical background about the old person welfare facility system investigated a theory about the duty factor and organized performance of literature investigation and the old person welfare facility worker. A theory analysis of positive data led based on about the effect factor of the causality which the duty factor of the old person welfare facility worker reaches in organized performance under verifying boil the modulating effect of holding office duration. The repair which is a duty factor of the old person welfare facility worker, according to the holding office duration which is a personal quality factor job satisfaction the promotion and organized natural features, business environment and organized structure are organized performance and organization immersion and loyalty degree different assumed with the fact that will affect. From positive analysis about the research object verifies a suitable degree about demographics school register analytical and study model, structural equation model leads and construction verification and modulating effect analysis under executing boil.

Mechanical behavior of an underground research facility in Korea Atomic Energy Research Institute

  • Kwon S.K.;Cho W.J.;Hahn P.S.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.245-252
    • /
    • 2005
  • An underground research facility (KURF) is under construction at KAERI for the in situ studies related to the validation of a HLW disposal system. For the safe construction and long-term researches at KURF, mechanical stability of the facility should be evaluated. In this study, 3D mechanical stability analysis using the rock mass properties determined from various in situ as well as laboratory tests was carried out. From the analysis, it was possible to predict the rock deformation, stress concentration, and plastic zone developed before and after the excavation. A test blasting was performed to characterize the site dependent dynamic response, which can be used for the prediction of the blasting impact on the facilities in KAERI.

  • PDF

The Analysis of Potential Distribution for Submerged Electrical Fittings in an Underground Shopping Street (지하상가 침수 시 전기설비 전위분포 해석)

  • Jung, Jin-Soo;Jung, Jong-Wook;Kim, Sun-Gu
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.2072-2073
    • /
    • 2007
  • This paper describes the analysis of potential distribution and leakage current magnitude around the electrical fittings submerged in an underground shopping street. In the experiment, a couple of electrical utilities(outlet, fluorescent lamp) were submerged in a concrete water bath. The experimental results are expected to be utilized for the risk assessment and the safety countermeasure against the electric shock.

  • PDF

The MUF of a Pilot-Scaled ACP Facility and Its Sensitivity

  • W. I. Ko;D. Y. Song;Lee, S. Y.;Kim, H. D.;Park, S. W.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.401-405
    • /
    • 2003
  • The Advanced Spent Fuel Conditioning Process (ACP) have been developed at the Korea Atomic Energy Research Institute (KAERI) as an alternative for the effective conditioning of spent fuel far long-term storage or/and eventual disposal. This paper addresses the safeguardability of a pilot-scaled ACP facility and its sensitivity analysis. For this, a conceptual process and its material flow are analyzed using experiences from conventional fuel cycles, and measurement methods and their uncertainties are assumed for calculating MUF (Material Uncounted For) standards deviation (SD), We concluded from the preliminary analysis of the MUF SD that the pilot-scaled ACP facility with capacity of 30 MTHM/year can meet the International Atomic Energy Agency (IAEA) safeguards goals.

  • PDF

Evaluation of Flow Accelerated Corrosion of Carbon Steel with Rotating Cylinder (Rotating cylinder를 이용한 탄소강의 유동가속부식 평가)

  • Park, Tae Jun;Lee, Eun Hee;Kim, Kyung Mo;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.257-262
    • /
    • 2012
  • Flow accelerated corrosion (FAC) of the carbon steel piping in nuclear power plants (NPPs) has been major issue in nuclear industry. Rotating cylinder FAC test facility was designed and fabricated and then performance of the facility was evaluated. The facility is very simple in design and economic in fabrication and can be used in material and chemistry screening test. The facility is equipped with on line monitoring of pH, conductivity, dissolved oxygen(DO), and temperature. Fluid velocity is controlled with rotating speed of the cylinder with a test specimen. FAC test of SA106 Gr. B carbon steel under 4 m/s flow velocity was performed with the rotating cylinder at DO concentration of less than 1 ppb and of 1.3 ppm. Also a corrosion test of the carbon steel at static condition, that is at zero fluid velocity, of test specimen and solution was performed at pH from 8 to 10 for comparison with the FAC data. For corrosion test in static condition, the amount of non adherent corrosion product was almost constant at pH ranging from 8 to 10. But adherent corrosion product decreased with increasing pH. This trend is consistent with decrease of Fe solubility with an increase in pH. For FAC test with rotating cylinder FAC test facility, the amount of non adherent corrosion product was also almost same for both DO concentrations. The rotating cylinder FAC test facility will be further improved by redesigning rotating cylinder and FAC specimen geometry for future work.

Implementing a Power Facility Management Services using RFID/USN Technology (RFID/USN 기술을 이용한 전력설비관리 서비스 구현)

  • Kim, Young-Il;Shin, Jin-Ho;Song, Jae-Ju;Yi, Bong-Jae
    • The KIPS Transactions:PartD
    • /
    • v.15D no.2
    • /
    • pp.263-270
    • /
    • 2008
  • Research of ubiquitous computing becomes more popular topic along with the rapid development of wireless technologies. Firstly, research and development on RFID focuses on manufacturing and retail sectors, because it can improve supply chain efficiency. But, it changes to USN (Ubiquitous Sensor Network) by adding a sensor and wireless network technologies on it. In this research, we design and implement the electric facility management service framework to collect real time information of electric facility using RFID/USN. In electric power industry, it is important the supply of energy must be guaranteed. So many power utilities control and supervise the transmission line to avoid power failures. Utilities install many types of sensor to monitor important facilities by wired network such as optical cable and PLC. In this research, we develop the sensor node which is small, easy to install and using wired network. We design the service framework for electric facility management to collect data using RFID tag, reader and wireless sensor nodes and implement the electric facility management service.

DESIGN OPTIMIZATION OF RADIATION SHIELDING STRUCTURE FOR LEAD SLOWING-DOWN SPECTROMETER SYSTEM

  • KIM, JEONG DONG;AHN, SANGJOON;LEE, YONG DEOK;PARK, CHANG JE
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.380-387
    • /
    • 2015
  • A lead slowing-down spectrometer (LSDS) system is a promising nondestructive assay technique that enables a quantitative measurement of the isotopic contents of major fissile isotopes in spent nuclear fuel and its pyroprocessing counterparts, such as $^{235}U$, $^{239}Pu$, $^{241}Pu$, and, potentially, minor actinides. The LSDS system currently under development at the Korea Atomic Energy Research Institute (Daejeon, Korea) is planned to utilize a high-flux ($>10^{12}n/cm^2{\cdot}s$) neutron source comprised of a high-energy (30 MeV)/high-current (~2 A) electron beam and a heavy metal target, which results in a very intense and complex radiation field for the facility, thus demanding structural shielding to guarantee the safety. Optimization of the structural shielding design was conducted using MCNPX for neutron dose rate evaluation of several representative hypothetical designs. In order to satisfy the construction cost and neutron attenuation capability of the facility, while simultaneously achieving the aimed dose rate limit (< $0.06{\mu}Sv/h$), a few shielding materials [high-density polyethylene (HDPE)eBorax, $B_4C$, and $Li_2CO_3$] were considered for the main neutron absorber layer, which is encapsulated within the double-sided concrete wall. The MCNP simulation indicated that HDPE-Borax is the most efficient among the aforementioned candidate materials, and the combined thickness of the shielding layers should exceed 100 cm to satisfy the dose limit on the outside surface of the shielding wall of the facility when limiting the thickness of the HDPE-Borax intermediate layer to below 5 cm. However, the shielding wall must include the instrumentation and installation holes for the LSDS system. The radiation leakage through the holes was substantially mitigated by adopting a zigzag-shape with concrete covers on both sides. The suggested optimized design of the shielding structure satisfies the dose rate limit and can be used for the construction of a facility in the near future.

Composition and Use of Biosafety Level 3 Facility (생물안전 3등급 연구시설의 구성 및 이용)

  • Kim, Changhwan;Hur, Gyeunghaeng;Lee, Wangeol;Jung, Seongtae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.335-342
    • /
    • 2015
  • Laboratory facilities for biology are designed as biosafety level 1, biosafety level 2, biosafety level 3, and biosafety level 4. Biosafety level designations are based on a composite of the design features, construction, containment facilities, equipment, practice and operation procedures required for working with agents from the various risk groups. Generally, biosafety level 3 means the facility that is appropriate for the experiments using pathogens which can cause serious diseases by aerosol transmission. The biosafety level assigned for the specific work to be done is driven by professional judgement based on a risk assessment, rather than by automatic assignment according to the particular risk group designation of the pathogenic agents to be used. In this paper, we introduced the biosafety level 3 facility operated in ADD(Agency for defense development). It contains the overview of facility, microbiological experiment, animal experiment, decontamination and waste disposal. Biosafety level 3 laboratory in ADD has served the vital role in the research of biological agents and antidote development.

A Study of Facility Location Model Under Uncertain Demand (수요가 불확실한 경우의 장소입지 결정모형 연구)

  • 이상진
    • Korean Management Science Review
    • /
    • v.15 no.1
    • /
    • pp.33-47
    • /
    • 1998
  • The facility location problem considered here is to determine facility location sites under future's uncertain demand. The objective of this paper is to propose a solution method and algorithm for a two-stage stochastic facility location problem. utilizing the Benders decomposition method. As a two-stage stochastic facility location problem is a large-scale and complex to solve, it is usually attempted to use a mean value problem rather than using a stochastic problem. Thus, the other objective is to study the relative error of objective function values between a stochastic problem and a mean value problem. The simulation result shows that the relative error of objective function values between two problems is relatively small, when a feasibility constraint is added to a facility location model.

  • PDF

A Study on the Existing School Renovation Plan Direction for School Facilities Change Direction (학교시설변화 방향에 따른 기존 학교 리노베이션 계획방향에 관한 연구)

  • Kim, Sung-Joong;Lee, Ho-Chin
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.2 no.2
    • /
    • pp.15-33
    • /
    • 2002
  • This study purpose is extract on the architectural principles and architectural planning direction for existing school facility renovation. therefore, This study is occur to renovation from change factor and change direction of the school facility under prerequisite, school facility change direction is with a pedagogy side and it classified with the social side which it bites and it presented. School facility renovation extracted a plan principles with the base which will reach. Was extracted renovation plan Principles to analyze the interrelationship of necessary condition of school facility, It follows in renovation principle presented the renovation plan direction 61 branch.

  • PDF