• Title/Summary/Keyword: Rescue robot

Search Result 58, Processing Time 0.033 seconds

Design of a Cube-Style Modular Robot (큐빅 형태의 모듈라 로봇 디자인)

  • Oh, Jun-Young;Kim, Dea-Sun;Park, No-Su;Lee, Bo-Hee;Seo, Nam-Gil;Lee, Chang
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.345-346
    • /
    • 2007
  • This paper deals with design of a cube-style modular robot. The modular robot can change its own form according to the working environment. Therefore it is suitable to work in the search and rescue area with the shape of snake, legged robot and humanoid robot. Each of modular unit has to install its own controller on the body and driving mechanism in order to give it mobility autonomously. And also they should attach and detach each other with docking mechanism and algorithm. Using this mechanism, they can make union, separation, recombination. The other important point is that some information of each cell should be exchanged to reconfigure their shape and to make some docking of the modular cell. In this paper we suggested a design concept of our modular robot focused on the docking mechanism of the robot.

  • PDF

Functional Testing of First-Aid Gadget Prototypes for Relief Robot (구호로봇을 위한 응급처치용 가젯 시제품의 기능 테스트 방안)

  • Lee, Jaeseong;Lee, Ikho;Park, Taesang;Jeong, Choongpyo;Kim, Hyeonjung;An, Jinung;Lee, Seonghun;Yun, Dongwon
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.164-173
    • /
    • 2018
  • This paper proposes functional test methods of first-aid gadgets which are special end-effectors, for relief robot. In recent years, researches have been actively conducted on robots that can perform rescue operations on behalf of rescue workers in dangerous areas such as disasters and wars. These special robots mainly perform the task of finding or transporting injured people. However, it is sometimes they necessary to provide first aid in the field. Among the various first-aid operations, gadgets are being developed for oxygen supply, injection, and hemostasis operations that can be used in a defense/civilian area by using robot technology. Previous studies have proposed first-aid gadgets that are suitable for onsite situations and enable robots to perform the given task quickly and accurately. In this paper, we design a test procedure suitable for the functions of first-aid gadgets, summarize the results, and introduce future research directions.

TWR based Cooperative Localization of Multiple Mobile Robots for Search and Rescue Application (재난 구조용 다중 로봇을 위한 GNSS 음영지역에서의 TWR 기반 협업 측위 기술)

  • Lee, Chang-Eun;Sung, Tae-Kyung
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.3
    • /
    • pp.127-132
    • /
    • 2016
  • For a practical mobile robot team such as carrying out a search and rescue mission in a disaster area, the localization have to be guaranteed even in an environment where the network infrastructure is destroyed or a global positioning system (GPS) is unavailable. The proposed architecture supports localizing robots seamlessly by finding their relative locations while moving from a global outdoor environment to a local indoor position. The proposed schemes use a cooperative positioning system (CPS) based on the two-way ranging (TWR) technique. In the proposed TWR-based CPS, each non-localized mobile robot act as tag, and finds its position using bilateral range measurements of all localized mobile robots. The localized mobile robots act as anchors, and support the localization of mobile robots in the GPS-shadow region such as an indoor environment. As a tag localizes its position with anchors, the position error of the anchor propagates to the tag, and the position error of the tag accumulates the position errors of the anchor. To minimize the effect of error propagation, this paper suggests the new scheme of full-mesh based CPS for improving the position accuracy. The proposed schemes assuring localization were validated through experiment results.

Design and Development of the Multi-joint Tracked Robot for Adaptive Uneven Terrain Driving (험지 주행을 위한 다관절 트랙 로봇 설계 및 개발)

  • Koh, Doo-Yeol;Kim, Soo-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.265-272
    • /
    • 2009
  • IVarious driving mechanisms to adapt to uneven environment have been developed for many urban search and rescue (USAR) missions. A tracked mechanism has been widely used to maintain the stability of robot's pose and to produce large traction force on uneven terrain in this research area. However, it has a drawback of low energy efficiency due to friction force when rotating. Moreover, single tracked mechanism can be in trouble when the body gets caught with high projections, so the track doesn't contact on the ground. A transformable tracked mechanism is proposed to solve these problems. The mechanism is designed with several articulations surrounded by tracks, used to generate an attack angle when the robot comes near obstacles. The stair climbing ability of proposed robot was analyzed since stairs are one of the most difficult obstacles in USAR mission. Stair climbing process is divided into four separate static analysis phases. Design parameters are optimized according to geometric limitations from the static analysis. The proposed mechanism was produced from optimized design parameters, and demonstrated in artificially constructed uneven environment and the actual stairway.

  • PDF

Plan for the Development of a Standardized Dummy for Persons in Need of Rescue in a Confined Space (밀폐공간 구조 요구자를 위한 더미 표준화 개발 방안)

  • Choi, Seo-Yeon;Rie, Dong-Ho;Kim, Hyung-Jun
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.4
    • /
    • pp.99-105
    • /
    • 2016
  • This study was conducted to develop a dummy in an environment similar to the human body, to prepare a standard for evaluation and to present the process of the production in order to evaluate the performance of the robot that can detect the persons needing rescue in a confined space, who are difficult for fire-fighting officials to rescue in case of fire and disaster. As a result, a standard for evaluation was developed and standardized into four parts 'Normal,' 'Risk Stage 1,' 'Risk Stage 2' and 'Risk Stage 3'based on the number of breath cycles, carbon dioxide concentration, core temperature and criteria for hearing to recognize the voice. In addition, in order to produce a dummy, fever, breathing capacity and voice output function were compared and analyzed. This study has significance that it built up basic data of the method of producing the actual dummy, by presenting characteristics and controlling methods using the waterproof insulation heating coil for the function, solenoid valve for the consecutive output of breathing capacity and USB program sound board for voice output.

The Method of Vertical Obstacle Negotiation Inspired from a Centipede (지네를 모방한 수직 장애물 극복방법)

  • Yoon, Byung-Ho;Chung, Tae-Il;Koh, Doo-Yeol;Kim, Soo-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.193-200
    • /
    • 2012
  • Mobility is one of the most important issues for search and rescue robots. To increase mobility for small size robot we have focused on the mechanism and algorithm inspired from centipede. In spite of small size, using many legs and flexible long body, centipede can overcome high obstacles and move in rough terrains stably. This research focused on those points and imitated their legs and body that are good for obstacle negotiation. Based on similarity of a centipede's legs and tracks, serially connected tracks are used for climbing obstacles higher than the robot's height. And a centipede perceives environments using antennae on its head instead of eyes. Inspired from that, 3 IR sensors are attached on the front, top and bottom of the first module to imitate the antenna. Using the information gotten from the sensors, the robot decides next behavior automatically. In experiments, the robot can climb up to 45 cm height vertical wall and it is 600 % of the robot's height and 58 % of the robot's length.

Design of Articulated Mobile Robot to Overcome Vertical Passages in Narrow Space (수직통로를 극복하기 위한 협소구역 이동용 다관절 로봇 설계)

  • Lee J.S.;Kim S.H.;Yang H.S.;Park N.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.806-811
    • /
    • 2005
  • The robot to search and rescue is used in narrow space where human cannot approach. In case of this robot, it can overcome obstacles such as wrecks or stairs etc. Also, this robot can do various locomotion for each object. In this reason, an articulated robot has advantages comparing with one module robot. However, the existing articulated robot has limits to overcome vertical passages. For expanding contacted territory of robot, a novel mechanism is demanded. In this paper, the novel mechanism of articulated mobile robot is designed for moving level ground and vertical passages. This paper proposes to change wheel alignment. The robot needs two important motions for passing vertical passages like pipe. One is a motion to press wheels at wall for not falling into gravity direction. The other is a motion that wheels contact a vertical direction of wall's tangential direction for reducing loss of force. The mechanism of the robot focused that two motions can be acted to use just one motor. Length of each link of robot is optimized that wheels contact a vertical direction of wall's tangential direction through kinematic modeling of each link. The force of pressing wall of robot is calculated through dynamic modeling. This robot composes four modules. This mechanism is confirmed by dynamic simulation using ADAMS program. The articulated mobile robot is elaborated based on the results of kinematic modeling and dynamic simulation.

  • PDF

Design and Development of Terrain-adaptive and User-friendly Remote Controller for Wheel-Track Hybrid Mobile Robot Platform (휠-트랙 하이브리드 모바일 로봇 플랫폼의 지형 적응성 및 사용자 친화성 향상을 위한 원격 조종기 설계와 개발)

  • Kim, Yoon-Gu;An, Jin-Ung;Kwak, Jeong-Hwan;Moon, Jeon-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.558-565
    • /
    • 2011
  • Various robot platforms have been designed and developed to perform given tasks in a hazardous environment for surveillance, reconnaissance, search and rescue, etc. We considered a terrain-adaptive and transformable hybrid robot platform that is equipped with rapid navigation capability on flat floors and good performance in overcoming stairs or obstacles. The navigation mode transition is determined and implemented by adaptive driving mode control of the mobile robot. In order to maximize the usability of wheel-track hybrid robot platform, we propose a terrain-adaptive and user-friendly remote controller and verify the efficiency and performance through its navigation performance experiments in real and test-bed environments.

Wheel &Track Hybrid Mobile Robot Platform and Mechanism for Optimal Navigation in Urban Terrain (도심지형 최적주행을 위한 휠.무한궤도 하이브리드형 모바일 로봇 플랫폼 및 메커니즘)

  • Kim, Yoon-Gu;Kim, Jin-Wook;Kwak, Jeong-Hwan;Hong, Dae-Han;Lee, Ki-Dong;An, Jin-Ung
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.3
    • /
    • pp.270-277
    • /
    • 2010
  • Various robot platforms have been designed and developed to perform given tasks in a hazardous environment for the purpose of surveillance, reconnaissance, search and rescue, and etc. We have considered a terrain adaptive hybrid robot platform which is equipped with rapid navigation on flat floors and good performance on overcoming stairs or obstacles. Since our special consideration is posed to its flexibility for real application, we devised a design of a transformable robot structure which consists of an ordinary wheeled structure to navigate fast on flat floor and a variable tracked structure to climb stairs effectively. Especially, track arms installed in front side, rear side, and mid side are used for navigation mode transition between flatland navigation and stairs climbing. The mode transition is determined and implemented by adaptive driving mode control of mobile robot. The wheel and track hybrid mobile platform apparatus applied off-road driving mechanism for various professional service robots is verified through experiments for navigation performance in real and test-bed environment.