• Title/Summary/Keyword: Required velocity

Search Result 978, Processing Time 0.034 seconds

A Study on Aerodynamic Loads of a Deploying Wing Launched from a Mobile Platform (이동식 플랫폼에서 발사되는 비행체의 날개 전개 공력 하중에 관한 연구)

  • Lee, Younghwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.353-359
    • /
    • 2019
  • In this study, a aerodynamic loads prediction to design a deploying device of folded fin was introduced. In general, resultant flow conditions around the fin are used to obtain deploying moments and required energy. However, when it comes to the air vehicles launched from a mobile platform, more specific flow conditions can be provided. With the conditions, the design criteria can be calculated more realistically. In this study, therefore, aerodynamic moments induced by aerodynamic loads and energy required in deployment were calculated using wind-over-deck(WOD) velocity, combination of a platform velocity and a wind velocity. For the calculation, wind tunnel test was conducted on various angle of attack, side slip angles, and folding angles. It was found that the aerodynamic moments and the energy required in deployment using the non-uniform flow due to the velocity components were less than those using the uniform flow without the components.

A Proposal of an Interpolation Method of Missing Wind Velocity Data in Writing a Typical Weather Data (표준기상데이터 작성 시 누락된 풍속 데이터의 보간 방법 제안)

  • Park, So-Woo;Kim, Joo-wook;Song, Doo-sam
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.79-91
    • /
    • 2017
  • The meteorological data of 1 hour interval are required to write a typical weather data for building energy simulation. However, many meterological data are missing and the interpolation method to recover the missing data is required. Especially, lots of meterological data are replicated by linear interpolation method because the changes are not significant. While, the wind velocity fluctuates with the time or locations, so linear interpolation method is not appropriate in interpolation of the wind velocity data. In this study, three interpolation methods, using surrounding wind velocity data, Inverse Distance Weighting (IDW), Revised Inverse Distance Weighting (IDW-r), were analyzed considering the characteristics of wind velocity. The Revised Inverse Distance Weighting method, proposed in this study, showed the highest reliability in restoration of the wind velocity data among the analyzed methods.

Discharge Estimation Using Non-dimensional Velocity Distribution and Index-Velocity Method in Natural Rivers (자연하천에서 무차원 유속분포-지표유속법을 이용한 유량산정)

  • Kim, Chang-Wan;Lee, Min-Ho;Jung, Sung-Won;Yoo, Dong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.855-859
    • /
    • 2007
  • It is essential to obtain accurate and highly reliable streamflow data for water resources planning, evaluation and management as well as design of hydraulic structures. A new discharge estimation method, which is named 'non-dimensional velocity distribution and index-velocity method,' was proposed in this research. This method showed very close channel discharges which were calculated with the exiting velocity-area method. When velocity-area method is used to estimate channel discharge, it is required to observe point velocities at every desired point and vertical using a current meter like Price-AA. However 'non-dimensional velocity distribution and index-velocity method' is used, it become optional to observe point velocities at every desired point and vertical. But this method can not be applied for the cases of very complex and strongly asymmetric channel cross-sections because non-dimensional velocity distribution by entropy concept may be quite biased from that of natural rivers.

  • PDF

Effect of Circumferential Velocity from Guide Vane on the Nozzle Flow of a Jet Fan (제트팬 노즐내부 유동에 대한 고정익 출구 원주속도의 영향)

  • 최충현;이재헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.3
    • /
    • pp.209-216
    • /
    • 2001
  • A numerical study is peformed to investigate the effect of circumferential velocity generated by the guide vane on the nozzle flow of a jet fan, s a way of increasing the penetration force of jet fan with nozzle of 175mm diameter. For the validation of numerical results. the velocity is measured by a 5-hole pitot tube and flow visualization is conducted by the tuft method. Under the inlet condition that the maximum circumferential velocity in the stator outlet of the present jet fan is 1.8m/s, the axial velocity in the nozzle outlet has the feature that the velocity at the axis is low and the velocity near the wall high. Therefore, to increase the throw length of the jet fan, the configuration of the fairing and nozzle needs to be developed and the precise revise of the stator angle is required, In addition, the bigger the circumferential velocity, the smaller the axial velocity at the axis and the bigger non-uniformity of the flow distribution.

  • PDF

Kinematical Analysis of the Back Somersault in Floor Exercise (마루운동 제자리 뒤공중돌기 동작의 운동학적 분석)

  • Chung, Nam-Ju
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.157-166
    • /
    • 2007
  • This study was to compare the major kinematic factors between the success and failure group on performing the back somersault motion in floor exercise. Three gymnasts(height : $167.3{\pm}2.88cm$, age : $22.0{\pm}1.0years$, body weight : $64.4{\pm}2.3kg$) were participated in this study. The kinematic data was recorded at 60Hz with four digital video camera. Two successful motions and failure motions for each subject were selected for three dimensional analysis. 1. Success Trail It was appear that success trail was larger than failure group in projection velocity, but success trail was smaller than failure trail in projection angle. Also it was appear that success trail was longer than failure group in the time required. Hand segment velocity and maximum velocity in success trail were larger than those in failure trail, and this result was increasing the projection velocity and finally increasing the vertical height of center of mass. At the take-off(event 2), flection amount of hip and knee joint angle was contributed to the optimal condition for the take-off and at the peak point, hip and knee joint angle was maximum flexed for reducing the moment of inertia. Also in this point, upper extremities of success trail extended more than those of failure trail. in this base, success trail in upward phase(p3) 2. Failure Trail It was appear that failure trail was smaller than success trail in projection velocity, but failure trail was larger than success trail in projection angle. Also it was appear that failure trail was more short than success trail in the time required. Hand segment velocity and maximum velocity in failure trail were smaller than those in success trail, and this result was reducing the projection velocity and finally reducing the vertical high of center of mass. At the take-off(event 2), flection amount of hip and knee joint angle wasn't contributed to the optimal condition for the take-off and at the peak point, hip and knee joint angle wasn't maximum flexed for reducing the moment of inertia. Also in this point, upper extremities of failure trail didn't extended more than those of success trail.

Numerical Analysis on the Tow Point of Gaori Kite (가오리연의 매듭에 대한 수치해석 연구)

  • Sah, Jong-Youb
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.195-202
    • /
    • 2016
  • There is two popular kites, Bangpae and Gaori. While the Bangpae kite is being widely loved by experts, the Gaori kite is popular for kids and beginners. Three types of Gaori kite product have been survayed on the tow point. The aerodynamic force on Gaori kite is numerically calculated by using Fluent. Through flight simulations at the tow point of each kite type, the new tow point, at which the required minimum velocity is lower than those of existing tow points, has been proposed as a standard. The required minimum velocity is the threshold wind velocity at which the kite begins to fly.

The DESI peculiar velocity survey

  • Saulder, Christoph
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.43.4-43.4
    • /
    • 2021
  • One of the most promising secondary target programmes of DESI is the peculiar velocity survey, which will notably improve the measurements of cosmology parameters in the low-redshift universe. We use the Fundamental plane and Tully-Fisher relation as distance indicators to calculate peculiar velocities for DESI. This required additional observations to obtain spectra with sufficient quality to measure the velocity dispersions in the case of the fundamental plane, and to get off-centre redshift measurements to reconstruct the rotation curve in the case of the Tully-Fisher relation. However, we devised a clever strategy for suitable target galaxies, that takes advantage of the spare fibres of DESI to gather the required additional data without causing conflicts with the main survey programmes. We provide a brief overview of the preliminary results and success rate based on the first measurements obtained during survey validation as well as an outlook on expected improvements in the fσ8 measurements once the survey has been completed.

  • PDF

Performance Evaluation Method of a Swing Check Valve (스윙형 역지밸브 성능 평가 방법)

  • Kim, Y.S.;Lee, D.W.;Kim, D.W.;Park, S.K.;Hong, S.Y.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.881-886
    • /
    • 2003
  • In spite of its simple design, structure and operating mechanism, swing check valves are one of the critical components which adversely affect the safety of the nuclear power plants if they fail to function properly. Therefore, it is important to evaluate the performance condition of the swing check valves in safety-related systems. The performance characteristics of swing check valves include opening characteristics, the minimum required flow velocity, the pressure drop at design flow, the disc stability, and the effect of the upstream disturbances. Among factors to identify the performance of a swing check valve, a method to evaluate the opening characteristics and the minimum required flow velocity, which guarantees to fully open the disc and hold the disc without motion, are presented to determine the operating region of the swing check valve, such as stable, tapping, or oscillation. Based on the determined operating region and opening characteristics, the simple methods of wear and fatigue analyses of the specific parts of the valve are also described.

  • PDF

Velocity Vector Imaging (속도 벡터 영상 방법)

  • Kwon, Sung-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1E
    • /
    • pp.11-27
    • /
    • 2010
  • Nowadays, ultrasound Doppler imaging is widely used in assessing cardiovascular functions in the human body. However, a major drawback of ultrasonic Doppler methods is that they can provide information on blood flow velocity along the ultrasound beam propagation direction only. Thus, the blood flow velocity is estimated differently depending on the angle between the ultrasound beam and the flow direction. In order to overcome this limitation, there have been many researches devoted to estimating both axial and lateral velocities. The purpose of this article is to survey various two-dimensional velocity estimation methods in the context of Doppler imaging. Some velocity vector estimation methods can also be applied to determine tissue motion as required in elastography. The discussion is mainly concerned with the case of estimating a two-dimensional in-plane velocity vector involving the axial and lateral directions.

Solution and Estimate to the Angular Velocity of INS Formed only by Linear Accelerometers

  • Junwei, Wu;Jinfeng, Liu;Yunan, Zhang;Na, Yuan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.103-107
    • /
    • 2006
  • At present, most efforts tend to develop a INS which is only based linear accelerometers, because of the low cost micro-machining gyroscopes lack of the accuracy needed for precise navigation application and possible achieving the required levels of precise for micro-machining accelerometer. Although it was known in theory that a minimum of six accelerometers are required for a complete description of a rigid body motion, and any configuration of six accelerometers (except for a "measure zero " set of six-accelerometer schemes) will work. Studies on the feasible configuration of GF-INS indicate that the errors of angular velocity resolved from the six accelerometers scheme are diverged with time or have multi solutions. The angular velocity errors are induced by the biases together with the position vectors of the accelerometers, therefore, in order to treat with the problem just mentioned, researchers have been doing many efforts, such as the extra three accelerometers or the magnetometers may be taken as the reference information, the extended Kalman filter (EKF) involved to make the angular velocity errors bound and be estimated, and so on. In this paper, the typical configurations of GF-INS are introduced; for each type GF-INS described, the solutions to the angular velocity and the specific force are derived and the characteristic is indicated; one of the corresponding extend Kalman filters are introduced to estimate the angular errors; parts of the simulation results are presented to verify the validity of the equations of angular velocity and specific force and the performance of extend Kalman filter.

  • PDF