• Title/Summary/Keyword: Required thrust

Search Result 224, Processing Time 0.036 seconds

Experimental Study for Performance Evaluation of Gate Valve (게이트밸브의 성능평가를 위한 실험적 연구)

  • Cho, Tack-Dong;Yang, Sang-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.884-888
    • /
    • 2007
  • It is necessary to evaluate periodically the performance of the AOV(air-operated valve) which is used for controlling flow and pressure in nuclear power plant. The required thrust for actuating valve and available thrust of actuator are calculated with conditions of flow through a valve in this study and operating performance is analyzed through comparing two thrusts. In general, differential pressure is increased according to increase the flow rate and differential pressure affects the required thrust of valve. We found the fact that it is possible not to close the valve perfectly because required thrust becomes bigger than available thrust of actuator.

Optimization and Thrust force Calculation of Linear Generator in Starting Mode for Free-Piston Engine Applications

  • Lee, Hyun-Woo;Eid Ahmad M.;Sugimura Hisayuki;Choi, Kwang-Ju;Nakaoka Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.395-398
    • /
    • 2006
  • this paper provides a novel method to start the linear engine coupled linear generator from dead stop to its final steady state operation. This method depends mainly to use the linear generator mounted on the shaft of the linear engine to provide the required thrust force to move and oscillate the linear engine from bottom to top dead centers. It is a cost effective approach to start the internal linear combustion engine using its coupled tubular permanent magnet linear generator proposed here. This linear generator operates in this case in motoring mode, providing the required thrust force by feeding this linear generator phases with currents by using a three phase PWM inverter controlled by position feedback scheme. In order to provide the desired thrust force with specific value and direction, a position feedback is required to control the free piston engine motion through controlling the inverter switches using PWM control scheme.

  • PDF

Analysis of the Thrust Augmentation in the Canister with Baseplate Orifices (오리피스 형상에 따른 발사관 내 부가추력 특성 연구)

  • Yoon, Jin-Young;Lim, Beom-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1067-1072
    • /
    • 2011
  • If the flow of booster gas which is exhausted to the rear part of a canister is properly restricted in the canister of a hot-launch system, the resultant pressure built up in the canister provides additional force to accelerate the missile to a required launch velocity. These thrust augmentation performances can be controlled through the configuration design of baseplate orifices. In this paper, the simple technique to analyze the thrust augmentation performances of baseplate orifices is suggested and the thrust augmentation characteristics by its various configurations are compared. According to the initial displacement of a missile, the inner pressure of a canister is measured from scaled cold flow tests, and the discharge coefficient of baseplate orifices is calculated. Then the thrust augmentation in a canister is simulated by applying these discharge characteristics to the AMESIM software for launch dynamics.

Numerical Study of a Flapping Flat Plate for Thrust Generation (플랩핑 평판의 추력발생에 대한 수치적 연구)

  • An, Sang-Joon;Kim, Yong-Dae;Maeng, Joo-Sung;Han, Chul-Heui
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.209-212
    • /
    • 2006
  • Insect and birds in nature flap their wings to generate fluid dynamic forces that are required for the locomotion. Most of the previous published papers discussed mainly on the effect of flapping parameters such as flapping frequency and amplitude on the thrust at a fixed Reynolds number. However, it is not much known on the values of the flapping parameters that the flapping wing requires to generate the thrust at the low Reynolds number flow. In this paper, the onset of the thrust generation is investigated using the lattice Boltzmann method. The wake patterns and velocity profiles behind a flat plate in heaving oscillation are investigated for the heaving amplitude of 0.5C. The time-averaged thrust coefficient value is investigated by changing the reduced frequency from 0.125 to 3.0 for three values of heaving amplitude (h/C=0.25, 0.325, 0.50). It is also found that the critical Strouhal number over which the flat plate starts to produce the thrust is around 0.1 and the thrust is an exponential function of the Strouhal number.

  • PDF

An Estimation Technique for the Thrust Performance of AUVs (AUV의 추진성능 추정 기법 연구)

  • Lee, Chong-Moo;Choi, Hyun-Taek;Moon, Il-Sung;Lee, Pan-Mook
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.47-51
    • /
    • 2009
  • Thrust is one of the important performance characteristics of an AUV. At the design stage, the resistance of an AUV at its maximum speed is estimated and then the thrust system is designed, including the propeller diameter, propeller rpm, driving system, and required power. However, it is not possible to be certain that the thrust system has been correctly designed until the AUV is launched and its speed is measured. If data from a propeller open-water test is available, the thrust and torque of the propeller at a certain speed can be estimated. In addition, if the motor's torque characteristics are available, the maximum speed saturated by the induced propeller torque can be estimated. In this paper, an easy technique for estimating the maximum speed of an AUV will be shown, even in a case where additional resistance is gained from appendages not considered at the design stage. Furthermore, the thrust performance changes by adjusting the diameter of the propeller can be easily investigated.

Development of a Miniature Air-bearing Stage with a Moving-magnet Linear Motor

  • Ro, Seung-Kook;Park, Jong-Kweon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.19-24
    • /
    • 2008
  • We propose a new miniature air-bearing stage with a moving-magnet slotless linear motor. This stage was developed to achieve the precise positioning required for submicron-level machining and miniaturization by introducing air bearings and a linear motor sufficient for mesoscale precision machine tools. The linear motor contained two permanent magnets and was designed to generate a preload force for the vertical air bearings and a thrust force for the stage movement. The characteristics of the air bearings, which used porous pads, were analyzed with numerical methods, and a magnetic circuit model was derived for the linear motor to calculate the required preload and thrust forces. A prototype of a single-axis miniature stage with dimensions of $120\;(W)\;{\times}\;120\;(L)\;{\times}\;50\;(H)\;mm$ was designed and fabricated, and its performance was examined, including its vertical stiffness, load capacity, thrust force, and positioning resolution.

Thrust and Propellant Mixture Ratio Control of Open Type Liquid Propellant Rocket Engine (개방형 액체추진제로켓엔진의 추력 및 혼합비 제어)

  • Jung, Young-Suk;Lee, Jung-Ho;Oh, Seung-Hyub
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1143-1148
    • /
    • 2007
  • LRE(Liquid propellant Rocket Engine) is one of the important parts to control the motion of rocket. For operation of rocket in error boundary of the set-up trajectory, it is necessarily to control the thrust of LRE according to the required thrust profile and control the mixture ratio of propellants fed into combustor for the constant mixture ratio. It is not easy to control thrust and mixture ratio of propellants since there are co-interferences among the components of LRE. In this study, the dynamic model of LRE was constructed and the dynamic characteristics were analyzed with control system as PID control and PID+Q-ILC(Iterative Learning Control with Quadratic Criterion) control. From the analysis, it could be observed that PID+Q-ILC control logic is more useful than standard PID control system for control of LRE.

  • PDF

Effect of Pintle Inflection Points on Performance of the SNECMA Modulatable Thrust Devices (핀틀의 변곡점 형상이 SNECMA 노즐목 가변 추력기의 성능에 미치는 영향)

  • Wang, Seung-Won;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.237-240
    • /
    • 2011
  • Numerical simulation was carried out to investigate the effect of pintle inflection point on the performance of the SNECMA modulatable thrust devices. Results show that the effect of inflection points in the pintle is to decrease aerodynamic load while maintaining required thrust level.

  • PDF

Thrust augmentation through after-burning in scramjet nozzles

  • Candon, Michael J.;Ogawa, Hideaki;Dorrington, Graham E.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.2
    • /
    • pp.183-198
    • /
    • 2015
  • Scramjets are a class of hypersonic airbreathing engine that are associated with realizing the technology required for economical, reliable access-to-space and high-speed atmospheric transport. After-burning augments the thrust produced by the scramjet nozzle and creates a more robust nozzle design. This paper presents a numerical study of three parameters and the effect that they have on thrust augmentation. These parameters include the injection pressure, injection angle and streamwise injection position. It is shown that significant levels of thrust augmentation are produced based upon contributions from increased pressure, mass flow and energy in the nozzle. Further understanding of the phenomenon by which thrust augmentation is being produced is provided in the form of a force contribution breakdown, analysis of the nozzle flowfields and finally the analysis of the surface pressure and shear stress distributions acting upon the nozzle wall.

Design Method of the High Accuracy Thrust Stand (고 정확도 추력 계측 시험대 설계기법)

  • Lee Kyu-Joon;Park Ik-Soo;Choi Yong-Kyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.9-17
    • /
    • 2006
  • The thrust measurement systems(TMS) with high accuracy are required in rockery, according to develop the high precise guided space vehicle. For obtaining high accuracy, the basic concepts and the necessary technology which have been acquired through many experiences of TMS are summarized, and the design methodology for practical use in ADD is presented. In this paper, the parameters against accuracy of TMS are discussed, and the improving methods are suggested. Through this application example, the design methodology of ADD is shown its superiority in TMS.