Maity, Sayan;Abdel-Mottaleb, Mohamed;Asfour, Shihab S.
Journal of Information Processing Systems
/
제16권1호
/
pp.6-29
/
2020
Biometrics identification using multiple modalities has attracted the attention of many researchers as it produces more robust and trustworthy results than single modality biometrics. In this paper, we present a novel multimodal recognition system that trains a deep learning network to automatically learn features after extracting multiple biometric modalities from a single data source, i.e., facial video clips. Utilizing different modalities, i.e., left ear, left profile face, frontal face, right profile face, and right ear, present in the facial video clips, we train supervised denoising auto-encoders to automatically extract robust and non-redundant features. The automatically learned features are then used to train modality specific sparse classifiers to perform the multimodal recognition. Moreover, the proposed technique has proven robust when some of the above modalities were missing during the testing. The proposed system has three main components that are responsible for detection, which consists of modality specific detectors to automatically detect images of different modalities present in facial video clips; feature selection, which uses supervised denoising sparse auto-encoders network to capture discriminative representations that are robust to the illumination and pose variations; and classification, which consists of a set of modality specific sparse representation classifiers for unimodal recognition, followed by score level fusion of the recognition results of the available modalities. Experiments conducted on the constrained facial video dataset (WVU) and the unconstrained facial video dataset (HONDA/UCSD), resulted in a 99.17% and 97.14% Rank-1 recognition rates, respectively. The multimodal recognition accuracy demonstrates the superiority and robustness of the proposed approach irrespective of the illumination, non-planar movement, and pose variations present in the video clips even in the situation of missing modalities.
Le, Thanh Ha;Long, Vuong Tung;Duong, Dinh Trieu;Jung, Seung-Won
ETRI Journal
/
제38권6호
/
pp.1114-1123
/
2016
Multi-view video plus depth (MVD) has been widely used owing to its effectiveness in three-dimensional data representation. Using MVD, color videos with only a limited number of real viewpoints are compressed and transmitted along with captured or estimated depth videos. Because the synthesized views are generated from decoded real views, their original reference views do not exist at either the transmitter or receiver. Therefore, it is challenging to define an efficient metric to evaluate the quality of synthesized images. We propose a novel metric-the reduced-reference quality metric. First, the effects of depth distortion on the quality of synthesized images are analyzed. We then employ the high correlation between the local depth distortions and local color characteristics of the decoded depth and color images, respectively, to achieve an efficient depth quality metric for each real view. Finally, the objective quality metric of the synthesized views is obtained by combining all the depth quality metrics obtained from the decoded real views. The experimental results show that the proposed quality metric correlates very well with full reference image and video quality metrics.
Up to now, most researches on production automation have concentrated on local automation, e. g. CAD, CAM, robotics, etc. However, to achieve total automation it is required to link each local modules such as CAD, CAM into a unified and integrated system. One such missing link is between CAD and computer vision system. This thesis is an attempt to link the gap between CAD and computer vision system. In this paper, we propose algorithms that carry out edge detection, thinning and pruning from the image data of manufactured parts, which are obtained from video camera and then transmitted to computer. We also propose a feature extraction and surface determination algorithm which extract informations from the image data. The informations are compatible to IGES CAD data. In addition, we suggest a methodology to reduce search efforts for CAD data bases. The methodology is based on graph submatching algorithm in GEFG(Generalized Edge Face Graph) representation for each part.
멀티미디어데이터의 급격한 양적 팽창은 원하는 데이터를 빠르고 정확하게 검색해야 한다는 새로운 과제를 안겨주었다. 이러한 효율적 검색을 위해서 가장 중요한 기반이 되는 것이 바로 데이터의 적절한 표현이다. 2001년 국제 표준으로 제정된 MPEG-7은 바로 이러한 이유로 멀티미디어 데이터의 표현에 대한 표준화를 다루고 있다. 그러나 MPEG-7의 내용은 표준의 특성상 포함하는 범위가 방대하고 실제 검색시스템을 구축하려는 이들에게 다루기 힘든 것이 사실이다. 이에 본 논문에서는 MPEG-7에 제시되어 있는 표준 중 비주얼 기술자들만을 이용하여 간단한 검색시스템을 구축하는 방법에 대하여 제시하고 그 검색 결과를 도시하였다. 또한 개발된 시스템인 MPEG-7 VIRS(Video/Image Retrieval System)의 검색 결과를 통하여 각 비주얼 기술자를 이용한 검색과 다중 기술자들의 조합을 이용한 검색간의 결과를 분석하였으며 앞으로 MPEG-7을 이용한 검색 시스템이 나아갈 방향에 대한 간단한 제시를 하고 있다.
본 고에서는 비디오로부터 coherent story를 학습하여 비디오 스토리를 재현할 수 있는 스토리 학습/재현 프레임워크를 제안한다. 이를 위해 연속 이벤트 순서를 감독학습 정보로 사용함으로써 각 에피소드들이 은닉 공간 상에서 궤적 형태를 가지도록 유도하여, 순서정보와 의미정보를 함께 다룰 수 있는 복합된 표현 공간을 구축하고자 한다. 이를 위해 유아용 비디오 시리즈를 학습데이터로 활용하였다. 이는 이야기 구성의 특성, 내러티브 순서, 복잡도 면에서 여러 장점이 있다. 여기에 연속 이벤트 임베딩을 반영한 인코더-디코더 구조를 구축하고, 은닉 공간 상의 시퀀스의 모델링에 양방향 LSTM을 학습시키되 여러 스텝의 서열 데이터 생성을 고려하였다. '뽀롱뽀롱 뽀로로' 시리즈 비디오로부터 추출된 약 200 개의 에피소드를 이용하여 실험결과를 보였다. 실험을 통해 에피소드들이 은닉공간에서 궤적 형태를 갖는 것과 일부 큐가 주어졌을 때 스토리를 재현하는 문제에 적용할 수 있음을 보였다.
최근 비디오가 대화형 콘텐츠를 위한 타입으로 많은 각광을 받기 시작하면서 비디오 데이터에 포함된 객체들을 의미적으로 표현하고 검색하기 위한 시맨틱 어노테이션 방법에 대한 연구가 활발히 진행되고 있다. 비디오 데이터에 포함된 객체들은 시간의 변화에 따라 공간적 위치가 변화하기 때문에 매 프레임마다 상이한 위치 데이터가 발생한다. 따라서 모든 프레임의 객체에 대한 위치 데이터들을 저장하는 것은 매우 비효율적이므로 이를 부적절한 오차가 발생하지 않는 범위 내에서, 효과적으로 압축하여 표현할 필요가 있다. 본 논문은 컴퓨터 또는 에이전트가 직관적으로 객체에 대한 정보를 이해할 수 있도록 표현하기 위해 비디오 데이터가 포함하는 객체에 대하여 의미적 정보를 부여하기 위한 온톨로지 모델링 방법과 이동 객체의 위치 데이터를 압축하기 위해 3차 스플라인 보간법을 적용하여 의미적 정보와 함께 어노테이션 하는 방법을 제안한다. 제안한 어노테이션 방법의 효율을 검증하기 위한 대화형 비디오 시스템을 구현하고, 다양한 특징을 가지는 객체가 나타나는 비디오 데이터 셋을 이용하여 샘플링 간격에 따른 오차율과 데이터량을 비교하였다. 그 결과, 샘플링 간격이 15프레임 이하 일 때, 최대 80%의 데이터 저장 공간을 절약할 수 있을 뿐만 아니라 객체의 실제 좌표 대비 최대 31픽셀, 평균 4픽셀 미만의 오차 편차를 얻을 수 있었다.
VVC는 화면 내 예측에서 67가지의 모드를 사용한다. 이때 화면 내 예측 모드 표현을 위한 데이터를 감소시키기 위하여 MPM(Most Probable Mode)을 사용한다. 시그널링 되는 모드가 MPM 후보 내에 존재하는 경우 MPM 리스트의 해당 index를 송신하는 방법을 사용하고 MPM 후보 내에 존재하지 않는 경우에는 TBC 부호화를 적용한다. 화면 내 예측에서 TBC가 적용될 때 MPM 후보를 제외하고 낮은 번호의 모드 순서대로 3가지가 선택되어 5비트로 부호화되고 나머지 모드는 6비트로 부호화된다. 본 논문에서는 VVC의 화면 내 예측에서 사용하는 TBC 기술의 한계점을 알아보고 화면 내 예측에서 TBC를 사용할 때 기존의 방법보다 효율적으로 부호화 할 수 있는 적응적인 방법을 제안한다. 그 결과 기존의 부호화 방법과 비교해서 overall 부호화 성능이 AI와 RA에서 각각 0.01%, 0.04%의 부호화 효율이 증대되었다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제16권2호
/
pp.104-110
/
2016
Dense local image descriptors like SIFT are fruitful for capturing salient information about image, shown to be successful in various image-related tasks when formed in bag-of-words representation (i.e., histograms). In this paper we consider to utilize these dense local descriptors in the object tracking problem. A notable aspect of our tracker is that instead of adopting a point estimate for the target model, we account for uncertainty in data noise and model incompleteness by maintaining a distribution over plausible candidate models within the Bayesian framework. The target model is also updated adaptively by the principled Bayesian posterior inference, which admits a closed form within our Dirichlet prior modeling. With empirical evaluations on some video datasets, the proposed method is shown to yield more accurate tracking than baseline histogram-based trackers with the same types of features, often being superior to the appearance-based (visual) trackers.
Subjects were 66 3- to 4-year-old-Children of unemployed mothers from upper middle class families. Attachment behaviors were measured with the Preschool Strange Situation(Cassidy and Marvin, 1992) and classified as secure, avoidant, dependent, or disorganized. Narrative representations of mothers by Children were obtained by video taped interviews using the MacArthur Story-Stem Battery and coded by the MacArthur Narrative Working Group(1997) system. Data were analyzed with descriptive statistics and t test. Results were that children in the secure group showed more positive representations of their mothers, more prosocial story themes, had higher scores in theme coherence and showed more positive emotional expression than those in the insecure group. The attachment behaviors of the 4 groups(A, B, C, D) were closely correlated with the attachment representations shown in MSSB.
비디오 데이터에서 움직임 객체에 대한 움직임 경로는 내용-기반 검색을 위해 비디오 데이터를 색인하는 데 있어 매우 중요한 역할을 한다. 따라서, 본 논문에서는 비디오 데이터에서 움직임 객체의 움직임 경로를 모델링하기 위한 새로운 시공간 표현 기법을 제안한다. 비디오 데이터를 위한 보다 효율적인 내용-기반 검색을 위해, 제안하는 기법은 시간, 공간 관계성과 더불어 일정 시간 간격 동안 움직인 객체의 이동 거리(moving distance)를 고려한다. 아울러, 제안하는 표현 기법에 기반하여 단일 움직임 객체의 움직임 경로와 다수 움직임 객체들의 움직임 경로를 위한 새로운 유사성 측정 알고리즘을 제시하며, 이들 알고리즘은 검색 결과에 대해서 유사성에 준하여 순위(Ranking)를 부여할 수 있다. 마지막으로, 성능 평가를 통하여 제안된 시공간 표현 기법은 기조의 Li 방법과 Shan의 방법에 비해 동등한 재현율을 유지하며, 정확율 측면에서 약 20%의 성능 향상을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.