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Abstract

Dense local image descriptors like SIFT are fruitful for capturing salient information about
image, shown to be successful in various image-related tasks when formed in bag-of-words
representation (i.e., histograms). In this paper we consider to utilize these dense local de-
scriptors in the object tracking problem. A notable aspect of our tracker is that instead of
adopting a point estimate for the target model, we account for uncertainty in data noise and
model incompleteness by maintaining a distribution over plausible candidate models within the
Bayesian framework. The target model is also updated adaptively by the principled Bayesian
posterior inference, which admits a closed form within our Dirichlet prior modeling. With
empirical evaluations on some video datasets, the proposed method is shown to yield more
accurate tracking than baseline histogram-based trackers with the same types of features, often
being superior to the appearance-based (visual) trackers.
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1. Introduction

Object tracking is the task of localizing regions of the object of interest (e.g., face) in a
sequence of image frames, and considered one of the most important problems in computer
vision. Recently the dramatic increase of a large amount of video data further demands
efficient and accurate tracking algorithms for fast searching, retrieval, and indexing. Although
there has been considerable research work conducted for last decades [1, 2], object tracking is
still challenging mainly due to the constantly varying appearance of a target object over time,
originating from changes in pose, shape, and illumination.

A key component of many state-of-the-art object trackers is the appearance model that
represents the very thing that we aim to track. It can be an image template patch itself
for the target object [3–6], or alternatively one can use the histogram representation for
intensity, color, or edge statistics [7–9]. As the target appearance tends to vary over time
(e.g., pose/illumination variation and occlusion), it is crucial to change adaptively the target
appearance model, which is typically done by adjusting the model using the recently tracked
image patches.

The histogram-based appearance models are beneficial in that they are less sensitive to the
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partial occlusion [10]. However, most approaches build his-
tograms using merely the intensity or color statistics, unable
to capture higher-order information such as orientations and
scales of local gradients (i.e., directions of maximal intensity
changes). Motivated by this, in this paper we propose a his-
togram of the SIFT codewords as a target appearance model.
The SIFT [11] descriptors are robust in illumination and view-
point changes, successful in various tasks including image clas-
sification, matching, and annotation [12, 13]. We follow the
standard protocol to assign a SIFT codeword to each point in
a densely sampled grid. From the computed codewords, it is
easy to form a histogram of a candidate tracking region (details
shown in Sec. 3 and 4).

Another problem of many existing histogram-based trackers
is that they often do not take into account the uncertainty in
the chosen target model, but rather take the current model as
a ground-truth. The task of target model estimation inherently
entails uncertainty due to data noise and model incompleteness,
and the tracker would drift eventually unless the uncertainty is
properly dealt with. Our second contribution is that we account
for uncertainty in the target appearance model by maintain-
ing a distribution over plausible candidate models within the
Bayesian framework. Instead of having a single point estimate
for the target model, our approach performs a model averag-
ing for prediction, yielding a tracker more robust to noise in
observation (e.g., partial occlusion).

Specifically we form a target as a Dirichlet density over the
multinomial histogram space where the target compatibility
score is defined as an expectation of the histogram similarity
score with respect to the current histogram density model. This
turns out to be especially beneficial for accounting for uncer-
tainty residing in the target histogram model. Also the target
model is updated adaptively by the principled Bayesian poste-
rior inference, which admits a closed form due to our choice of
the conjugate prior.

The paper is organized as follows. After briefly formalizing
the problem setup with some brief summary of recent related
work in Sec. 2, the proposed Bayesian approach of combin-
ing base vectors are described in Sec. 3, where we provide
experimental evaluations in Sec. 4.

2. Background on Object Tracking

In this section we provide formal problem setup and description
for the object tracking problem.

Tracking is an online sequential prediction problem. At each

time t, given the image frames F0, F1, . . . , Ft available thus
far, and previous tracking decisions u0, u1, . . . , ut−1, we make
a prediction ut for the target location in Ft. Here ut indicates
the target state in the image frame Ft, which is, assuming a
square axis-parallel target region, represented by three parame-
ters (cx, cy, ρ) where (cx, cy) is the center position of the target
(with respect to the image coordinate in Ft), and ρ ∈ (0,∞) is
the relative scale compared to the reference size, say (48× 48)

pixels. Thus ut determines the cropped image patch for the ob-
ject, denoted by It = I(ut, Ft) where I(·, ·) is a well-defined
image warping function. Typically the initial state u0 in F0 is
given either by a user or an object detection program.

It is common that a tracker maintains the target observa-
tion model Θt (dependency on t emphasizes that the model
can be updated as time goes by), which can be tracker’s in-
ternal representation for the target appearance, for instance.
The observation model naturally defines the goodness (or sim-
ilarity) measure for a candidate state ut, namely how much
It = I(ut, Ft) looks like the object that we are going to track.
In the simplest first-frame tracker with the fixed target patch
Θt = I0 = I(u0, F0) regardless of t, the goodness of the state
ut can be defined to be inversely proportional to the exponenti-
ated distance s(I(ut, Ft), I0) = exp(−||I(ut, Ft)− I0||).

Due to the motion smoothness assumption (i.e., the object
does not move too far between two consecutive frames), one
does not need to search for the best ut over all possible candi-
dates, but only a small neighborhood centered at the previous
track ut−1, denoted as N (ut−1) = {u : ||u− ut−1|| ≤ ε} for
some ε > 0. Formally the tracking decision at t can be made
by:

ut = arg maxut∈N (ut−1)s(I(ut, Ft),Θt) (1)

for a properly chosen tracking similarity measure s(·, ·).
Once the tracking decision is made, it results in new data

It = I(ut, Ft), which can be used to update the observation
model, namely Θt+1 ← update(Θt, It). For instance, in the
incremental visual tracker (IVT) [4], the observation model
is the low-dimensional PCA subspace built from the previous
tracks I0, I1, . . . , It−1, and the subspace update with the new
data It is done by the incremental SVD algorithm [14].

3. Adaptive Bayesian Histogram Tracker

While visual trackers utilize the image patch I(ut, Ft) itself
(i.e., pixel intensities) to form observation models and distance
measures, we rather consider to extract higher-order informa-
tion using the SIFT descriptors. The SIFT [11] takes into ac-
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count orientations and scales of the local image gradients in a
sophisticated manner, becoming robust to diverse variations in
appearance.

For the current image frame Ft, we extract dense SIFT fea-
tures, say at every 3-by-3 pixel grid point. Each 128-dim SIFT
feature vector is then vector quantized into a codeword taking
value in {1, 2, . . . ,K} as follows: For a large collection of
SIFT features extracted from an (pre-chosen) image database,
we perform K-means clustering to find K cluster centers. That
is, the SIFT clustering is done offline. We use the database with
thousands of natural scene landscape images collected from the
ImageNet image database [15, 16], and the number of clusters
is typically set to K = 100 ∼ 150. Then for each SIFT feature
vector from the tracking frame Ft, we find the closest cluster
center, and the codeword is determined as its cluster ID.

Now, for the candidate tracking state ut, we count the num-
bers of the SIFT codewords that belong to the corresponding
patch It = I(ut, Ft). We let xt = [n1, n2, . . . , nK ]> be the
frequency count vector where nj is the number of the codeword
j that appears in It. Letting n =

∑K
j=1 nj (i.e., n is the num-

ber of grid points in It), the histogram representation for It is
ht = 1

nxt.
For the target observation model, one may form it as a his-

togram over the K codewords, namely Θt = θ = [θ1, θ2, . . . ,

θK ]> with
∑
j θj = 1 and θj ≥ 0 (i.e., θ lies in the (K − 1)-

(probability)-simplex ∆K−1). This modeling choice is tempt-
ing in that Θt is directly comparable to the candidate ht, specif-
ically one can adopt as a compatibility score the popular his-
togram intersection kernel [17, 18]: s(ht,Θt) :=

∑
j min(

(ht)j , θj). However, this target modeling is a point estimate,
and inherently unable to take into account the uncertainty origi-
nating from data noise and model incompleteness.

Instead of using the point estimate θ for the target model, we
suggest to have a density model over all possible histograms.
That is, our target model is P (θ). This accounts for uncertainty
in the underlying target histogram, and has an advantageous
effect of model averaging. As the density is defined over the
(K−1)-simplex, we can model it parametrically as the Dirichlet
distribution,

P (θ|α) = Dir(θ;α) =
1

B(α)

K∏
j=1

θ
αj−1
j , (2)

where B(α) =
∏K

j=1 Γ(αj)

Γ(
∑

j αj) with Γ(x) =
∫∞

0
tx−1e−tdt. The

parameter vector α = [α1, . . . , αK ]> is restricted to be positive,
and is the very target model we maintain during tracking. In

other words, using the notation in Sec. 2, our model at time t is
Θt = α.

Having the Dirichlet prior is beneficial as it serves as a con-
jugate prior in conjunction with the multinomial likelihood.
That is, at time t when we have the decision of the target con-
taining the codeword counts, xt = [n1, n2, . . . , nK ]> with∑
j nj = n, the posterior distribution of the model follows the

Bayes rule P (θ|xt) ∝ p(xt|θ)P (θ), and using the multinomial
P (xt|θ) = n!

n1!···nK !

∏
j θ

nj

j , it also becomes Dirichlet:

P (θ|xt) = Dir(θ;α′) where α′j = nj + αj , ∀j. (3)

The equation (3) becomes our model update equation, namely
Θt+1 = α′ = xt + α (addition elementwisely).

Next we need to define the compatibility score for a candidate
track xt = [n1, n2, . . . , nK ]> with

∑
j nj = n at time t with

respect to the current histogram density model P (θ;α). Simply
considering the marginal likelihood p(xt|α) as a compatibility
score turns out to be problematic. This is because:

P (xt|α) =

∫
P (xt|θ)P (θ;α)dθ (4)

=
n!

n1! · · ·nK !

1

B(α)

∫ K∏
j=1

θ
nj+αj−1
j dθ (5)

=
B(xt + α)

B(α)

n!

n1! · · ·nK !
, (6)

and P (xt|α) may have highly different scales across different
candidates xt’s as the numbers of SIFT grid points in target
patches (n) can vary (e.g., consider target patches of highly
different sizes).

Instead we propose a compatibility score based on the ex-
pected histogram intersection kernel. The idea is to average
the histogram similarities between the target and all plausible
histograms from the current model. For (unnormalized) xt
we form a histogram ht = 1

nxt, and define the similarity be-
tween the candidate xt and the current model α by the expected
histogram kernel, namely

s(ht, α) = EP (θ|α)[s(ht, θ)] (7)

=

∫
P (θ|α)s(ht, θ)dθ (8)

≈ 1

N

N∑
i=1

s(ht, θ
(i)), (9)

where in (9) we do Monte Carlo (MC) approximation for the
difficult integration by sampling N iid samples {θ(i)}Ni=1 from
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the current model P (θ|α).
In summary, our target appearance model is the Dirichlet dis-

tribution over the histograms P (θ|α), and the similarity score
s(ht, α) for a candidate target histogram ht is the expected (or
MC-averaged) histogram intersection kernel over the current
Dirichlet histogram density. Once the best candidate xt is found,
we update our model by incorporating the sample just found.
By the Bayes rule, we have the posterior in the same Dirichlet
family, namely P (θ|xt) = Dir(θ;xt + α).

4. Experiments

Now we test the proposed adaptive Bayesian histogram tracker
on three real-world videos from http://cvlab.hanyang.

ac.kr/tracker_benchmark/ (Box, Motor rolling, and
Bolt where some sample frames are depicted in Figure 1). As
mentioned earlier, for many natural scene images (at offline)
we extract and build a pool of SIFT features, from which we
learn K = 150 cluster center vectors from the K-means cluster-
ing. In this way, for a candidate image patch during tracking,
we can form a histogram representation (the number of bins is
K = 150) for the patch by performing vector quantization (i.e.,
imputed to the closest cluster center ID).

At each frame during tracking, we set the search space as a
bounding box centered at the previous target location and twice
the size of the previous target region. Within the bounding box,
we randomly generate 300 axis-parallel rectangular candidate
tracks, among which we compute the compatibility scores with
respect to the tracker’s target model. The candidate with the
highest score is then chosen, and subsequently used to update
the tracker.

For comparison, we consider the baseline histogram tracker
that maintains the point estimate histogram θ as the target model,
and update the model by the simple exponential smoothing
(averaging) of the all historic samples (with emphasis more on
recent ones). That is, for the histogram ht of the best candidate
in the current frame, we update: θnew = (1 − η)θ + ηht

where η ∈ [0, 1] is parameter of forgetting factor. We choose
empirically η = 0.95. We also compare our tracker with the
popular incremental visual tracking algorithm (IVT) [4] that
maintains the PCA subspace of the tracked target image patches,
thus not histogram-based.

For quantitative performance comparison, we record the
tracking drifts measured as Euclidean distance (in pixels) be-
tween the centers of the ground-truth target and the tracked
one. In Table 1 we summarize the per-frame averaged drifts

Table 1. Per-frame average tracking errors (in pixels)

Box Motor rolling Bolt

IVT 12.59 15.26 7.56

Smooth-Hist 16.69 29.33 5.03

Bayes-Hist 4.48 5.16 3.78

for three competing methods: simple exponential smoothed
histogram tracker (Smooth-Hist), the PCA-based incremental
visual tracker (IVT) [4], and our proposed Bayesian adaptive
histogram tracker (Bayes-Hist). As shown, the Bayes-Hist con-
sistently attains superb tracking performance than the visual
tracking and the baseline histogram tracker. This signifies the
impact of incorporating salient SIFT features in bag-of-words
forms into a tracker’s target model as well as the Bayesian
model averaging that effectively accounts for uncertainty origi-
nating from data noise and model incompleteness.

It is interesting to note that in the Bolt video, we see that
the histogram-based trackers, event the baseline Smooth-Hist,
yield smaller tracking errors than the visual tracker. This can be
explained as follows: the target appearance contains highly dis-
tinct texture (i.e., specific repeating intensity patterns) against
the background, which is well captured and discriminated by the
dense SIFT features than just intensity values alone. For some
selected frames we also depict the tracking results contrasting
the proposed method and the IVT in Figure 1.

5. Conclusion

In this paper we have proposed a novel Bayesian adaptive
histogram tracker that incorporates the dense local image de-
scriptors in an effective way. The Bayesian model averaging
performed during tracking decision turns out to yield more ro-
bust and accurate tracking results than existing visual tracking
methods. One potential caveat of the proposed approach is that
extracting SIFT features for every frame is computationally in-
tensive, and achieving real-time tracking in practice needs more
technical remedy. For instance, one can address the issue to
some extent by either restricting the search space more aggres-
sively, or delaying the tracking decision for several forthcoming
frames and pipelining SIFT extraction for newly coming frames.
Other ways of possible computational speedup will be pursued
in our future work.
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(a)

(b)

(c)

Figure 1. Tracking results on three videos. (a) Box, (b) Motor rolling, and (c) Bolt. Selected frames are highlighted where the yellow-solid
box indicates our Bayesian histogram tracker, while the red-dashed is IVT. The ground-truths are not shown, but they are tight bounding boxes
around the objects, which can be easily inferred visually.
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