• 제목/요약/키워드: Repair bond strength

검색결과 135건 처리시간 0.02초

Effectiveness of bond strength between normal concrete as substrate and latex-modified sand concrete reinforced with sisal fibers as a repair material

  • Oday Z. Jaradat;Karima Gadri;Bassam A. Tayeh;Ahmed M. Maglad;Abdelhamid Guettala
    • Advances in concrete construction
    • /
    • 제15권6호
    • /
    • pp.431-444
    • /
    • 2023
  • This study investigated the use of latex-modified sand concrete reinforced with sisal fibers (LMSC) as a repair material. Notably, no prior research has explored the application of LMSC for this purpose. This paper examines the interface bond strength and the type of failure between LMSC as a repair material and the normal concrete (NC) substrate utilising four different surfaces: without surface preparation as a reference (SR), hand hammer (HA), sandblasted (SB), and grooved (GR). The bond strength was measured by bi-surface shear, splitting tensile, and pull-off strength tests at 7, 28, and 90 days. Scanning electron microscopy analysis was also performed to study the microstructure of the interface between the normal concrete substrate and the latex-modified sand concrete reinforced with sisal fibers. The results of this study indicate that LMSC has bonding strength with NC, especially for HR and SB surfaces with high roughness. Therefore, substrate NC surface roughness is essential in increasing the bonding strength and adhesion. Eventually, The LMSC has the potential to repair and rehabilitate concrete structures.

Effect of light-curing, pressure, oxygen inhibition, and heat on shear bond strength between bis-acryl provisional restoration and bis-acryl repair materials

  • Shim, Ji-Suk;Lee, Jeong-Yol;Choi, Yeon-Jo;Shin, Sang-Wan;Ryu, Jae-Jun
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권1호
    • /
    • pp.47-50
    • /
    • 2015
  • PURPOSE. This study aimed to discover a way to increase the bond strength between bis-acryl resins, using a comparison of the shear bond strengths attained from bis-acryl resins treated with light curing, pressure, oxygen inhibition, and heat. MATERIALS AND METHODS. Self-cured bis-acryl resin was used as both a base material and as a repair material. Seventy specimens were distributed into seven groups according to treatment methods: pressure - stored in a pressure cooker at 0.2 Mpa; oxygen inhibition- applied an oxygen inhibitor around the repaired material,; heat treatment - performed heat treatment in a dry oven at $60^{\circ}C$, $100^{\circ}C$, or $140^{\circ}C$. The shear bond strength was measured with a universal testing machine, and the shear bond strength (MPa) was calculated from the peak load of failure. A comparison of the bond strength between the repaired specimens was conducted using one-way ANOVA and Tukey multiple comparison tests (${\alpha}$=.05). RESULTS. There were no statistically significant differences in the shear bond strength between the control group and the light curing, pressure, and oxygen inhibition groups. However, the heat treatment groups showed statistically higher bond strengths than the groups treated without heat, and the groups treated at a higher temperature resulted in higher bond strengths. Statistically significant differences were seen between groups after different degrees of heat treatment, except in groups heated at $100^{\circ}C$ and $140^{\circ}C$. CONCLUSION. Strong bonding can be achieved between a bis-acryl base and bis-acryl repair material after heat treatment.

파절된 도재면에 대한 수종의 도재 수리 시스템의 인장결합강도 (TENSILE BOND STRENGTH OF FOUR PORCELAIN REPAIR SYSTEMS)

  • 전영아;양병덕;이호진;박주미;송광엽
    • 대한치과보철학회지
    • /
    • 제43권2호
    • /
    • pp.149-157
    • /
    • 2005
  • Statement of problem. Dental ceramics exhibit excellent esthetic property, compressive strength, chemical durability biocompatibility and translucency. However, it suffers from inherent brittle fractures. Various techniques and materials for intraoral porcelain repair has been suggested. Purpose. This study is to compare the tensile bond strength of four commonly used porcelain repair systems (Vivadent, Bisco, Ulttadent, Voco) and to insure the best system for the clinical application to the fractured porcelain. Materials and methods. A total of fifty specimens were fabricated. Specimens were stored in $37^{\circ}C$ distilled water for 7 days and thermocycling was performed(1000 cycles), and subjected to a tensile force parallel to the repair resin and porcelain interface by use of an Universal Testing Machine. Result. 1. Voco showed the highest tensile bond strength. In decreasing order, the tensile bond strength of the other materials was as follows : Ultradent, Bisco, Vivadent. 2. There was a statistically significant difference between the porcelain repair systems(Voco, Ultradent > Bisco, Yivadent) (p<0.05). 3. SEM examination of prepared porcelain surfaces revealed that the surface treated with Voco showed brittle fracture. However, Ultradent, Bisco and Vivadent showed ductile fracture. 4. All specimens treated with four porcelain repair systems showed adhesive failure between porcelain and composite resin.

시효처리 후의 컴포지트에 대한 레진 컴포지트의 미세 인장 결합강도에 표면처리가 미치는 효과 (Effect of Surface Treatments of on the Microtensile Bond Strength of Resin Composite to Composite after aging Conditions)

  • 유민진;허미자;김희량;유미경;이광원
    • 구강회복응용과학지
    • /
    • 제26권3호
    • /
    • pp.339-347
    • /
    • 2010
  • 이전에 존재하던 컴포지트와 새로운 컴포지트 사이의 결합강도의 강화는 미세 기계적 유지를 증진하기 위한 표면 거칠기의 증가가 필요하다. 이 연구는 시효처리 후의 레진 컴포지트의 repair 결합강도에 다른 표면처리의 효과를 평가하는 것이다. 알루미늄 옥사이드를 이용한 air abrasion, chair-side silica coating한 그룹들에서 대조군과 불산 적용에 비하여 유의하게 높은 결합강도를 보였다. 레진 수복물의 repair시에 air abrasion의 사용은 필요한 것으로 보이며 부가적으로 silane의 적용은 결합강도에 긍정적 영향을 미치는 것으로 보인다.

폴리우레탄 개질 아스팔트 바인더를 사용한 포트홀 응급 보수재의 성능평가 (Evaluation of Emergency Pothole Repair Materials using Polyurethane-Modified Asphalt Binder)

  • 김영민;임정혁;황성도
    • 한국도로학회논문집
    • /
    • 제17권1호
    • /
    • pp.43-49
    • /
    • 2015
  • PURPOSES : The objective of this study is to develop new pothole repair materials using polyurethane-modified asphalt binder, and to evaluate them relative to current pothole repair materials in order to improve the performance of repaired asphalt pavement. METHODS : In the laboratory, polyurethane-modified asphalt binder is developed, and then asphalt binder is added to produce pothole repair materials. In order to evaluate the properties of this new pothole repair material, both an indirect tension strength test and a direct tension strength test are performed to measure the material strength and bond strength, respectively. Additionally, the basic material properties are evaluated using the asphalt cold mix manual. The strength characteristics based on curing times are evaluated using a total of 7 types of materials (3 types of current materials, 2 types of new materials, and 2 types of moisture conditioned new materials). The indirect tension strength tests are conducted at 1, 2, 4, 8, 16, and 32 days of curing time. The bond strength between current HMA(Hot Mix Asphalt) and the new materials is evaluated by the direct tension strength test. RESULTS AND CONCLUSIONS : Overall, the new materials show better properties than current materials. Based on the test results, the new materials demonstrate less susceptibility to moisture, faster curing times, and an improved bond strength between HMA and the new materials. Therefore, the use of the new materials reported in this study may lead to enhanced performance of repairs made to asphalt pavement potholes.

의치 수리용 레진의 색안정성과 결합강도에 관한 연구 (A STUDY ON THE COLOR STABILITY AND SHEAR BOND STRENGTH OF DENTURE REPAIR RESINS)

  • 진태호
    • 대한치과보철학회지
    • /
    • 제33권1호
    • /
    • pp.24-31
    • /
    • 1995
  • This study was performed to investigate the color stability and shear bond strength of denture repair resins. The denture base resins used in this study were Premium Super-20(Lang Dental Mfg. Co., Inc.,.U.S.A.) as heat curing resin, Triad VLC Denture Base(Dentsply/York Division, U.S.A.), Triad Reline Material(Dentsply/York Division, U.S.A.), Repair Acrylic(Lang Dental Mfg. Co., Inc.,. U.S.A.), Toughron Rebase (MikiChemical Product, Kyoto, Japan), and Tokuso Rebase(Tokuyama Soda Co., Ltd., Japan) as denture repair resin. After fabrication of specimens, they stored for 20 months, then color changes and shear bond strength were measured by colorimeter(Model TC-6FX, Tokyo Denshoku Co.) and Instron Universial Test Machine. The results were as follows : 1. There were changes of $L^{\ast},\;a^{\ast},\;b^{\ast}$ and $DE^{\ast}$ in Triad VLC Denture Base after 20 months. 2. There were changes of $a^{\ast}$ in Toughron Rebase and Tokuso Rebase, and $b^{\ast}$ in Tokuso Rebase after 20 months. 3. The shear bond strength of Repair Acrylic and Toughron Rebase were higher than that of Tokuso Rebase and Triad Reline Material.

  • PDF

Repair bond strength of composite resin to zirconia restorations after different thermal cycles

  • Cinar, Serkan;Kirmali, Omer
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권5호
    • /
    • pp.297-304
    • /
    • 2019
  • PURPOSE. This in vitro study investigated the repair bond strength of the zirconia ceramic after different aging conditions. MATERIALS AND METHODS. In order to imitate the failure modes of veneered zirconia restorations, veneer ceramic, zirconia, and veneer ceramic-zirconia specimens were prepared and were divided into 4 subgroups as: control ($37^{\circ}C$ distilled water for 24 hours ) and 3000, 6000, 12000 thermal cycling groups (n=15). Then, specimens were bonded to composite resin using a porcelain repair kit according to the manufacturer recommendation. The repair bond strength (RBS) test was performed using a universal testing machine (0.5 mm/min). Failure types were analyzed under a stereomicroscope. Two-way ANOVA and Bonferroni test were used for statistical analysis. RESULTS. The RBS values of zirconia specimens were statistically significant and higher than veneer ceramic and veneer ceramic-zirconia specimens in control, 3000 and 6000 thermal cycling groups (P<.05). When 12000 thermal cycles were applied, the highest value was found in zirconia specimens but there was no statistically significant difference between veneer ceramic and veneer ceramic-zirconia specimens (P>.05). Veneer ceramic specimens exhibited cohesive failure types, zirconia specimens exhibited adhesive failure types, and veneer ceramic-zirconia specimens exhibited predominately mixed failure types. CONCLUSION. Thermal cycling can adversely affect RBS of composite resin binded to level of fractured zirconia ceramics.

복합레진의 수리 시 표면처리가 결합강도에 미치는 영향 (EFFECT OF SURFACE TREATMENTS ON THE REPAIR BOND STRENGTH OF COMPOSITES)

  • 최정인;김영재;김정욱;이상훈;김종철;한세현;장기택
    • 대한소아치과학회지
    • /
    • 제35권4호
    • /
    • pp.692-699
    • /
    • 2008
  • 본 연구의 목적은 표면처리가 기존의 레진과 새로운 레진 사이의 전단결합강도에 미치는 영향을 평가하는 것이다. 준비된 레진 시편을 6군으로 임의로 배분하여 각각의 표면처리를 한 후 수리용 레진을 축조하였다. 일주일간 보관 후 전단결합강도 를 측정하였고 일원분산 분석법으로 통계처리하여 다음과 같은 결과를 얻었다. 1. 3군과 4군(air abrasion)은 1군(산부식)에 비해 전단결합강도가 유의하게 높게 나타났다(p<0.05). 5군과 6군(diamond bur)은 1군(산부식)에 비해 높은 전단결합강도를 나타냈으나 통계적으로 유의하지 않았다(p>0.05). 2. 2군(자가부식 접착제)은 1군(산부식)에 비해 전단결합강도가 낮게 나타났으나 유의한 차이는 없었다(p>0.05). 3. 3군(air abrasion)과 4군(air abrasion+산부식)에서 전단결합강도의 차이는 유의하지 않았다(p>0.05). 4. 5군(diamond bur)과 6군(diamond bur+산부식)에서 전단결합강도의 차이는 유의하지 않았다(p>0.05). 결론적으로, 복합레진의 수리 시 air abrasion으로 표면처리를 했을 때의 결합강도가 가장 높았고, 산부식 방법과 처리여 부는 수리강도에 유의한 영향을 미치지 않았다.

  • PDF

Evaluation of shear bond strength of repair acrylic resin to Co-Cr alloy

  • Kulunk, Safak;Kulunk, Tolga;Sarac, Duygu;Cengiz, Seda;Baba, Seniha
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권4호
    • /
    • pp.272-277
    • /
    • 2014
  • PURPOSE. The purpose of this study was to investigate the impact of different surface treatment methods and thermal ageing on the bond strength of autopolymerizing acrylic resin to Co-Cr. MATERIALS AND METHODS. Co-Cr alloy specimens were divided into five groups according to the surface conditioning methods. C: No treatment; SP: flamed with the Silano-Pen device; K: airborne particle abrasion with $Al_2O_3$; Co: airborne particle abrasion with silica-coated $Al_2O_3$; KSP: flamed with the Silano-Pen device after the group K experimental protocol. Then, autopolymerized acrylic resin was applied to the treated specimen surfaces. All the groups were divided into two subgroups with the thermal cycle and water storage to determine the durability of the bond. The bond strength test was applied in an universal test machine and treated Co-Cr alloys were analyzed by scanning electron microscope (SEM). Two-way analysis of variance (ANOVA) was used to determine the significant differences among surface treatments and thermocycling. Their interactons were followed by a multiple comparison' test performed uing a post hoc Tukey HSD test (${\alpha}=.05$). RESULTS. Surface treatments significantly increased repair strengths of repair resin to Co-Cr alloy. The repair strengths of Group K, and Co significantly decreased after 6,000 cycles (P<.001). CONCLUSION. Thermocycling lead to a significant decrease in shear bond strength for air abrasion with silica-coated aluminum oxide particles. On the contrary, flaming with Silano-Pen did not cause a significant reduction in adhesion after thermocycling.

의치상 레진에 대한 개상용 레진의 결합 강도에 관한 연구 (THE BOND STRENGTH OF REBASE RESIN TO DENTURE BASE RESIN)

  • 김일평;조혜원;진태호
    • 대한치과보철학회지
    • /
    • 제31권4호
    • /
    • pp.515-522
    • /
    • 1993
  • The purpose of this study was to evaluate the bond strength of rebase resin to denture base resin. The denture base resins in this study were Premium Super-20(Lang Dental Mfg. Co. Inc., Wheeling, USA) and Lucitone 199(Dentsply International Inc., York, USA). And the rebase resins were Repair Acrylic(Lang Dental Mfg. Co. Inc., Wheeling USA). Toughron Rebase(Miki Chemical Product Co. Ltd., Japan) , Tokuso Rebase(Tokuyama Soda. Co. Ltd., Japan) and Triad VLC Reline Material(Dentsply International Inc., York, USA). The obtained results were as follows : 1. The bond strength of Repair Acrylic to Premium Super-20, and that of Toughron Rebase to Lucitone 199 were the highest. 2. In Premium Super-20 and Lucitone 199, bond strength of all rebase resins had significant differences. 3. The bond strength of Triad VLC Reline Material was inclined to the lowset.

  • PDF