• Title/Summary/Keyword: Renewable policy

Search Result 435, Processing Time 0.03 seconds

A Study on the Optimal Resource Configuration Considering Load Characteristics of Electric Vehicles in Micro Grid Environment (전기자동차 부하 특성을 고려한 마이크로그리드의 최적 전원 구성에 관한 연구)

  • Hwang, Sung-Wook;Chae, Woo-Kyu;Lee, Hak-Ju;Yun, Sang-Yun;Kim, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.228-231
    • /
    • 2015
  • In power system research fields, one of current key issues is the construction and commercialization of micro grid site which is called green island, carbon zero island, energy independent island, building micro grid, etc. and various affiliated technologies have been being vigorously developed to realize. In addition, various researches about electric vehicles (EVs) are in progress and it is expected to penetrate rapidly with the next a few years. Some new load models should be developed integrating with electric vehicle loads because the EVs' deployment could cause the change of load composition rate on power system planning and operations. EVs are also resources for micro grid as well as distributed generation and demand response so that various supply and demand side resources should be considered for micro grid researches. In this paper, the load composition rate of residential sectors is prospected considering the deployment of EVs and the resource configuration of micro grid is optimized based on net present cost. In the optimization, the load patten of case studies includes EV's charging characteristics and various cases are simulated comparing micro grid environment and normal condition. HOMER is used to compare various cases and economic effects.

A Study on Investigation and Analysis of Photovoltaic Facilities for Building -Application in Jecheon Area- (건물적용 태양광 발전시설 실태 조사.분석에 관한 연구 - 제천지역을 중심으로 -)

  • Yun, Doo-Young;Kim, Jun-He;Yoo, Dong-Cheol;Lee, Eung-Jik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.354-359
    • /
    • 2012
  • With the long-term use of fossil fuel, the whole world is suffering from serious abnormal changes in weather caused by global warming. For this reason, many countries are reducing greenhouse gas emissions out of obligation and the allowable emissions are assigned to each country. Korea is also putting much effort into reducing greenhouse gas emissions by 30 percent against BAU(Business As Usual) by 2020, and is pushing ahead with several projects such as 'Million Green Home' and 'Hatsal Gaduk Home' to expand the use of new renewable energy in house as part of its policy. This study was designed to come up with improvements and help to expand photovoltaic facilities, by investigating and analyzing the current state of photovoltaic facilities in the country and problems in installing them through an in-site reconnaissance and a survey in Jecheon area. As the result, it was found that residents in the area were inadequate to operate and install photovoltaic facilities, lacked awareness of them and felt burdened economically by managing and installing them, although they had a high awareness of solar energy and photovoltaic facilities are constantly increasing with governmental support. In conclusion, it is considered that as improvements, operational effects should be increased through development of techniques, factors to reduce the effects in operating them due to insufficient management and installation should be removed and awareness of residents need to be improved through long-term plans, political support and education of the government.

  • PDF

Study on Thermal Efficiency according to Configuration Change and Contact Resistance of Solar Collector with Single Evacuated Tube-type (단일진공관 태양열집열기의 형상변화 및 접촉저항에 따른 집열효율 연구)

  • Choi, Bo-Won;Yang, Young-Joon
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.189-195
    • /
    • 2014
  • The use of solar energy among renewable energy tends to increase because of its infinity and cleanness of resources. Even though the consumption rate of solar energy in our country is still low, however, in recent years, the research for solar energy have been widely conducted due to policy support of government. This study was performed to investigate the efficiency of heat collection using solar collector with single evacuated tube-type. As the results, the temperature of radiation fin for solar collector with single evacuated tube-type was lower in spite of high temperature of heat pipe compared that of double evacuated tube-type. In order to increase the efficiency of heat collection, it was confirmed that the loss of heat collection due to contact resistance as well as performance improvement for solar collector should be decreased.

A Study on Safety Policies for a Transition to a Hydrogen Economy (수소경제로의 이행을 위한 안전관리 정책 연구)

  • Jun, Daechun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.2
    • /
    • pp.161-172
    • /
    • 2014
  • Hydrogen, which can be produced from abundant and widely distributed renewable energy resources, seems to be a promising candidate for solving the concerns for improving energy security, urban air pollution, and reducing greenhouse gas emissions. The two primary motivating factors for hydrogen economy are fossil fuel supply limitations and concerns about global warming. But the safety issues associated with hydrogen economy need to be investigated and fully understood before being considered as a future energy source. Limited operating experience with hydrogen energy systems in consumer environments is recognised as a significant barrier to the implementation of hydrogen economy. To prevent unnecessary restrictions on emerging codes, standards and local regulations, safety policies based on real hazards should be developed. This article studies briefly the direct impact-distances from hazard events such as hydrogen release and jet fire, and damage levels from hydrogen gas explosion in a confined space. Based on the direct impact-distances indicated in the accident scenarios and consumer environments in Korea, the safety policies, which are related to hydrogen filling station, hydrogen fuel cell car, portable fuel cell, domestic fuel cells, and hydrogen town, are suggested to implement hydrogen economy. To apply the safety policies and overcome the disadvantages of prescriptive risk management, which is setting guidance in great detail to management well known risk but is not covering unidentified risk, hybrid risk management model is also proposed.

A Study on Safety Performance Evaluation of NG Blower for 5 kW Class Stationary Fuel Cell Systems (5 kW급 건물용 연료전지 시스템 연료승압 블로워 안전 성능 평가에 관한 연구)

  • BAEK, JAE-HOON;LEE, EUN-KYUNG;LEE, JUNG-WOON;LEE, SEUNG-KUK;MOON, JONG-SAM;KIM, KYU-HYUNG;PARK, HAN-WOO;KIM, DONG-CHEOL;LEE, JIN-HEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.675-682
    • /
    • 2017
  • New government, the market for stationary fuel cell systems in domestic is expected to expand in line with the policy for expanding new and renewable energy. In order to promote and expand the domestic market for stationary fuel cell systems, it is required to do research and develop for cost reduction and efficiency improvement technologies through the localization of BOP. In this study, the safety performance including the power consumption, flow rate, noise and air-tightness of the domestic fuel booster blower and the foreign fuel booster blower was evaluated and the performance improvement of the domestic blower was confirmed. As a result of the power consumption measurement and the flow rate according to the back pressure of the A company 2nd prototype and B company, the values were 73 W, 27 LPM, and 55 W, 25 LPM. These results are attributed to the improvement of performance through design changes such as CAM angle and diaphragm material.

An Experimental Study on the Spray and Lean Combustion Characteristics of Bio-enthanol-Gasoline Blended Fuel of GDI (직접분사식 바이오에탄올-가솔린 혼합연료의 분무 및 희박연소 특성에 관한 실험적 연구)

  • Park, Gi-Young;Kang, Seok-Ho;Kim, In-Gu;Lim, Cheol-Soo;Kim, Jae-Man;Cho, Yong-Seok;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.115-122
    • /
    • 2014
  • As a demand for an automobile increases, air pollution and a problem of the energy resources come to the fore in the world. Consequently, governments of every country established ordinances for green-house gas reduction and improvement of air pollution problem. Especially, as international oil price increases, engine using clean energy are being developed competitively with alternative transportation energy sources development policy as the center. Bio ethanol, one of the renewable energy produced from biomass, gained spotlight for transportation energy sources. Studies are in progress to improve fuel supply methods and combustion methods which are key features, one of the engine technologies. DI(Direct Injection), which can reduce fuel consumption rate by injecting fuel directly into the cylinder, is being studied for Green-house gas reduction and fuel economy enhancement at SI(Spark Ignition). GDI(Galoine Direct Injection) has an advantage to meet the regulations for fuel efficiency and $CO_2$ emissions. However it produces increased number of ultrafine particles, that yet received attention in the existing port-injection system, and NOX. As fuel is injected into the cylinder with high-pressure, a proper injection strategy is required by characteristics of a fuel. Especially, when alcohol type fuel is considered. In this study, we tried to get a base data bio-ethanol mixture in GDI, and combustion for optimization. We set fuel mixture rate and fuel injection pressure as parameters and took a picture with a high speed camera after gasoline-ethanol mixture fuel was injected into a constant volume combustion chamber. We figured out spraying characteristic according to parameters. Also, we determine combustion characteristics by measuring emissions and analyzing combustion.

Basic Renewal Directions of Boundary Barriers in Rural Villages by Multi-attribute Decision Making (다요소의사결정법에 의한 농촌마을담장정비의 기본방향)

  • Lim, Jong-Hyeon;Choi, Soo-Myung;Yang, So-Yeol;Cho, Eun-Jung
    • Journal of Korean Society of Rural Planning
    • /
    • v.19 no.4
    • /
    • pp.307-317
    • /
    • 2013
  • The value and functionality of boundary barriers in rural villages have been neglected in the aspects as the buffer zone(boundary barrier) that links between the inside space(housing site) and the outside space(road). On this understanding, this study evaluated conservation value, economical efficiency and durability by the types and materials of the boundary barriers in rural village through Multi-attribute Decision Making. By applying to the current situations of boundary barriers on total 21 case study villages, each factor value was measured. And using Matrix Analysis Technique, the boundary barriers are classified into 4 types and the improvement ways for each type were proposed. As a result, the durability of boundary barriers in rural villages showed similarity value(more than 0.85 out of 1). But economical efficiency of those was low(less than 0.5 out of 1) and those functionalities were very lacking(about 0.3 out of 1). In the conclusion, the maintenance of boundary barriers in rural villages requires the policy that is able to complement conservation value and economical efficiency and is proper to the characteristic of each village. These renewable policies would contribute to the increase of the value of rural amenity as well as creation of economical and social value.

Patents and Papers Trends of Solar-Photovoltaic(PV) Technology using LDA Algorithm (LDA알고리즘을 활용한 태양광 에너지 기술 특허 및 논문 동향 연구)

  • Lee, Jong-Ho;Lee, In-Soo;Jung, Kyeong-Soo;Chae, Byeong-Hoon;Lee, Joo-Yeoun
    • Journal of Digital Convergence
    • /
    • v.15 no.9
    • /
    • pp.231-239
    • /
    • 2017
  • Solar energy is attracting attention as an alternative to fossil fuels. However, there was a lack of discussion on the overall research direction and future direction of research in technology development. In order to develop more effective technology, we analyzed and discussed the technology trend of solar energy using patent data and thesis data. As an analysis method, topics were selected by using topic modeling and text mining, the increase of included keywords was analyzed, and the direction of development of solar technology was analyzed. Research on solar power generation technology is expected to proceed steadily, and it is analyzed that intensive research will be done especially on high efficiency and high performance technology. Future studies could be conducted by adding overseas patent data and various paper data.

Establishment of Climate Region by Recent 30-year Temperature Range in South Korea Area (남한지역의 최근 30년간 기온분포에 의한 기후권역 설정)

  • Ryu, Yeon-Soo;Park, Mi-Lan;Kim, Jin-Wook;Joo, Hye-Jin
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.376-382
    • /
    • 2011
  • Since the Industrial Revolution has caused global change by using of a fossil fuel, a reckless and growth-oriented development. A global mean temperature since 19th century has climbed up 0.4~$0.8^{\circ}C$. Our country, afterwards, global warming has increased the temperature every season. After The Kyoto Protocol regarding a greenhouse gas reduction goal took effect, be situations that decrease of greenhouse gas was acutely required. Therefore, interest of utilization of the new & renewable energy is increasing everyday. In advanced research, we shows that at first divided a country to nine range by natural geography, and second executed Meteorological data analysis of recent 30 years considering level of significance by nine range. The results of advanced research are that the similarities are low because there are the regions that temperature deviation of the similar climate regions is large in winter season, and there are not characteristics of clear discrimination of temperature. This study shows that at first divided a country to six range by temperature range, and second executed Meteorological data analysis of recent 30 years considering level of significance by six range. The results of this study are that in heating load calculation of building, periodic temperature data management is required because facility capacity and cost are affected greatly by outdoor temperature, and temperature by climate range needs consideration of pertinent area. Ground temperature was assumed of the weather in region, the ground and soil. Lastly, we were able to know that establishment of climate region by temperature range can be useful policy making and plans of design of the horticultural facilities and architectures.

  • PDF

Cost.Benefit Risk Based Purchase Pricing Process Model for Feed in Tariffs of Photovoltaic Power Projects (비용.수익 리스크 기반 태양광사업 발전차액지원 기준가격 산정 프로세스 모델)

  • Kim, Se-Jong;Koo, Kyo-Jin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.1
    • /
    • pp.113-121
    • /
    • 2010
  • Since the cut-down of the purchasing price of the feed in tariff(FIT) in 2008, the numbers of photovoltaic projects get decreased, contrary to investment expansion policy of government on renewable energy. The root cause of the decrease is the irrationality of the current purchasing price structure of FIT as well as the adversity of fund raising due to the global financial crisis. This study proposes the FIT calculating model (Cost & Benefit Risk Based Purchase Price Process : CBRP3) reflecting the fluctuation of cost and benefit risks. The first step is to establish the photovoltaic generation alternatives, and to calculate each distribution data of the investment and the power generation quantity. The FIT for each alternative is, then, assessed through simulations. Finally the proposed FIT scheme is compared to the present FIT scheme and future study subjects are derived.