• Title/Summary/Keyword: Rendering treatment

Search Result 61, Processing Time 0.026 seconds

LED Fiber-Optic Lighting Devices Developed for Medical Assistance for the Local Treatment Retractor (국부치료를 위한 Retractor용 LED 광섬유 의료보조조명 장치 개발)

  • Eo, Ik-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.666-671
    • /
    • 2016
  • This paper introduces a device providing close local lighting to the affected part, where the operation-purpose astral lamp alone cannot shed light directly, in an operation room of hospitals or clinics, which helps clinical doctors perform safe treatment of the affected part deep inside a human body. This medical assisting lighting is a device necessary to prevent fatal operation failures, which can occur with minute operation processes, such as tumor removal or angiorrhaphy. The components, such as the light source and power supply were designed to be low power consuming and small in size, have a narrow angle lens was used to increase the light spreading effect and focused illumination. The end-caps of the light transmission device using an optical cable and the lighting device were designed in the waterproof type to enable disinfection of these devices after use for the next patients. According to the measurement of the light source properties made after development of the retractor lighting device, the illumination intensity was 490 lux, the brightness was $11,550cd/m^2$, general color rendering index was 78, color temperature was 11,000K, and the intensity distribution was even, which were confirmed to be adequate for medical assisting local lighting.

Synthesis and Luminescence Properties of Sr/SmSi5N8:Eu2+ Phosphor for White Light-Emitting-Diode

  • Luong, Van Duong;Lee, Hong-Ro
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.192-197
    • /
    • 2014
  • Red-emitting nitride phosphors recently attracted considerable attention because of their high thermal stability and high color rendering index properties. For excellent phosphor of white light-emitting-diode, ternary nitride phosphor of $Sr/SmSi_5N_8:Eu^{2+}$ with different $Eu^{2+}$ ion concentration were synthesized by solid state reaction method. In this work, red-emitting nitride $Sr/SmSi_5N_8:Eu^{2+}$ phosphor was successfully synthesized by using multi-step high frequency induction heat treatment. The effects of molar ratio of component and experimental conditions on luminescence property of prepared phosphors have been investigated. The structure and luminescence properties of prepared $Sr/SmSi_5N_8:Eu^{2+}$ phosphors were investigated by XRD and photoluminescence spectroscopy. The excitation spectra of $Sr/SmSi_5N_8:Eu^{2+}$ phosphors indicated broad excitation wavelength range of 300 - 550 nm, namely from UV to visible area with distinct enhanced emission peaks. With an increase of $Eu^{2+}$ ion concentration, the peak position of emission in spectra was red-shifted from 613 to 671 nm. After via multi-step heat treatment, prepared phosphor showed excellent luminescence properties, such as high emission intensity and low thermal quenching, better than commercial phosphor of $Y_3Al_5O_{12}:Ce^{3+}$. Using $Eu_2O_3$ as a raw material for $Eu^{2+}$ dopant with nitrogen gas flowing instead of using commercial EuN chemical for $Sr/SmSi_5N_8:Eu^{2+}$ synthesis is one of characteristic of this work.

Versatility of the Distally-Based Sural Artery Fasciocutaneous Flap on the Lower Leg and Foot in Patients with Chronic Disease

  • Park, Jin-Su;Roh, Si-Gyun;Lee, Nae-Ho;Yang, Kyoung-Moo
    • Archives of Plastic Surgery
    • /
    • v.40 no.3
    • /
    • pp.220-225
    • /
    • 2013
  • Background A recent advancement in microsurgery, the free flap is widely used in the reconstruction of the lower leg and foot. The simple and effective methods of local flaps, including transposition and advancement flaps, have been considered for patients with chronic debilitation who are unable to endure long surgical procedures or general anesthesia. However, the location and size of the wound may restrict the clinical application of a local flap. Under these circumstances, a sural flap can be an excellent alternative, rendering satisfying clinical outcomes in chronically debilitated patients. Methods Between 2008 and 2012, 39 patients underwent soft tissue defect treatment by sural artery flap as a final method. All of the patients had at least one chronic disease or more (diabetes, hypertension, vascular disease, etc.). Also, all of the patients had a history of chronic lower extremity ulceration, which revealed no response to several months of conservative treatment. Results The results of the 39 cases had a success rate of 100% with 39 complete recoveries. Nine cases suffered complications: partial necrosis (n=4), wound dehiscence without necrosis (n=3), hematoma (n=1), and infection (n=1). Conclusions The sural artery flap is not only useful for the lower leg but also for the heel, and other various parts. Furthermore, it is a relatively simple surgical technique for reconstructing the defect area for patients with various chronic conditions with a high surgical risk or contraindications to surgery.

MDCT Angiography of the Subclavian Artery Thrombosis of the 3D Findings (쇄골하동맥 혈전증에서의 MDCT 혈관조영술의 3D 영상)

  • Kweon, Dae Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.813-819
    • /
    • 2018
  • To demonstrate the 3D usefulness of MDCT, a 73-year-old male patient with subclavian thrombosis was obtained 3D images of maximum intensity projection (MIP), volume rendering, and multiplanar reformation (MPR) to clearly detect and locate the subclavian artery. The data will be provided to the patient for diagnosis and treatment. The scan data were acquired as 3D CT images MIP, volume rendering, curved MPR, and virtual endoscopy images. In the 3D program, the ascending aorta was measured as 364.28 HU, the left carotid artery was 413.77 HU, and the left subclavian artery was 15.72 HU. MIP coronal image shows the closure of the subclavian artery in the left side. Three-dimensional volume images were obtained with 100% permeability and 87-1265 HU. The coronal curved MPR and sagittal curved MPR images show the closure of the subclavian artery due to thrombus using 3D image processing. In the case of subclavian arterial occlusion due to thrombosis, the patient is scanned with MDCT and 3D image processing can be used to confirm occlusion of subclavian artery.

The Pharmacology of Botulinum Toxin (보툴리눔 독소의 약리)

  • Lee, Sang Hyuk;Lee, Hyun Sub;Jin, Sung Min
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.23 no.2
    • /
    • pp.93-98
    • /
    • 2012
  • Botulinum toxins are the most potent toxins known to mankind. Botulinum toxin acts by blocking the cholinergic neuromuscular or the cholinergic autonomic innervation of exocrine glands and smooth muscles. Seven distinct antigenic botulinum toxins (A, B, C, D, E, F and G) produced by different strains of Clostridium botulinum have been described and only A and B type of botulinum toxins were clinically used. Toxins were consisted of a heavy chain with a molecular weight of 100 kD and a light chain with a molecular weight of 50 kD. Toxins are bound with an astounding selectivity to glycoprotein structures located on the cholinergic nerve terminal. Subsequently light chain of toxin is internalized and cleaves different proteins of the acetylcholine transport protein cascade transporting the acetylcholine vesicle from the intracellular space into the synaptic cleft. After a decade of therapeutic application of the toxin, no anaphylaxis or deaths have been reported and systemic adverse effects have not been reported so far. However the toxin's immunologic properties can lead to the stimulation of antibody production, potentially rendering further treatments ineffective. Botulinum toxin is a safe and effective treatment. Use of botulinum toxin in clinical medicine has grown exponentially in recent years, and many parts of the human body are now being targeted for therapeutic purposes.

  • PDF

A Study on RGBY LED Light using a Vacuum Printing Encapsulation Systems Method (진공 프린팅 성형 인쇄법(VPES)을 이용한 R.G.B.Y(Red, Green, Blue, Yellow) LED 광원 연구)

  • Jang, Min-Suk;Kim, Yeoung-Woo;Shin, Gi-Hae;Park, Joung-Wook;Hong, Jin-Pyo;Song, Sang-Bin;Kim, Jae-Pil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.10-18
    • /
    • 2011
  • In order to develop highly-integrated RGBY(Red, Green, Blue, Yellow) LED light, a high thermal radiation ceramic package was manufactured, and the encapsulation process was applied with a vacuum printing encapsulation system(VPES). After the completion of vacuum printing, the shape of the encapsulation layer could be controlled by heat treatment during the curing process, and the optical power became highly increased as the encapsulation layer approached a dome shape. The optical characteristics involved in a Correlated Color Temperature(CCT), a Color Rendering Index (CRI), and the efficiency of RGBY LED light were able to be identified by the experimental designing method. Regarding the characteristics of the white light of RGBY LED light, which were measured on the basis of the aforementioned optical characteristics, CRI posted 88, CCT recorded 5,720[$^{\circ}K$], and efficiency exhibited 52[lm/W]. The chip temperature of RGBY LEDs was below 55[$^{\circ}C$] when the consumption power of LED chips was 0.1[W] for the red, 0.3[W] for the green, 0.08[W] for the blue, and 0.24[W] for the yellow. Also, the thermal resistance of the highly-integrated RGBY LED light measured by T3Ster was 2.3[K/W].

Photoluminescence of Al2O3:xCr2O3 Solid Solution and Application as the Additive for Improving CRI of Red Phosphor (Al2O3:xCr2O3 고용상의 발광특성과 적색형광체의 연색성 향상을 위한 첨가제로의 응용)

  • Chae, Ki-Woong;Cheon, Chae-Il;Kim, Jeong-Seog
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.122-126
    • /
    • 2010
  • In this article photoluminescence of the $Al_2O_3:xCr_2O_3$ solid solutions prepared by solid state reaction method are represented. The effect of $Cr_2O_3$-activator concentration and heat treatment time on the PL characteristics have been discussed in conjunction with microstructure of phosphor samples. The $Al_2O_3:xCr_2O_3$ phosphors show the highest PL intensity at x=0.003 mole when the samples are reacted at $1600^{\circ}C$ for 5 h. The PL emission and absorption spectra show the maximum peaks at 698 nm and at 398 nm respectively. The CIE color coordinate is (x=0.646, y=0.316) at 0.003 mole $Cr_2O_3$, which value is very close to the NTSC coordinate of red color. This characteristic feature of $Al_2O_3:xCr_2O_3$ has been applied for an additive to improve the color characteristic of other red phosphor $LiEuW_2O_8$ which has a relatively poor color purity with an emission peak centered at 615 nm and with a CIE coordinate (x=0.530, y=0.280). The $Al_2O_3:0.003Cr_2O_3$ phosphor has been mixed with the $LiEuW_2O_8$ phosphor powder and the PL characteristics and CIE color coordinates are characterized. The $Al_2O_3:xCr_2O_3$ phosphor was found effective for improving the CRI (color rendering index) of $LiEuW_2O_8$ phosphor.

Development of 3D Modeling Technology of Human Vacancy for Bio-CAD (Bio-CAD를 위한 인체공동부의 3차원 모델링 기술 개발)

  • Kim, Ho-Chan;Bae, Yong-Hwan;Kwon, Ki-Su;Seo, Tae-Won;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.138-145
    • /
    • 2009
  • Custom medical treatment is being widely adapted to lots of medical applications. A technology for 3D modeling is strongly required to fabricate medical implants for individual patient. Needs on true 3D CAD data of a patient is strongly required for tissue engineering and human body simulations. Medical imaging devices show human inner section and 3D volume rendering images of human organs. CT or MRI is one of the popular imaging devices for that use. However, those image data is not sufficient to use for medical fabrication or simulation. This paper mainly deals how to generate 3D geometry data from those medical images. A new image processing technology is introduced to reconstruct 3D geometry of a human body vacancy from the medical images. Then a surface geometry data is reconstructed by using Marching cube algorithm. Resulting CAD data is a custom 3D geometry data of human vacancy. This paper introduces a novel 3D reconstruction process and shows some typical examples with implemented software.

Partial Confinement Utilization for Rectangular Concrete Columns Subjected to Biaxial Bending and Axial Compression

  • Abd El Fattah, Ahmed M.;Rasheed, Hayder A.;Al-Rahmani, Ahmed H.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.135-149
    • /
    • 2017
  • The prediction of the actual ultimate capacity of confined concrete columns requires partial confinement utilization under eccentric loading. This is attributed to the reduction in compression zone compared to columns under pure axial compression. Modern codes and standards are introducing the need to perform extreme event analysis under static loads. There has been a number of studies that focused on the analysis and testing of concentric columns. On the other hand, the augmentation of compressive strength due to partial confinement has not been treated before. The higher eccentricity causes smaller confined concrete region in compression yielding smaller increase in strength of concrete. Accordingly, the ultimate eccentric confined strength is gradually reduced from the fully confined value $f_{cc}$ (at zero eccentricity) to the unconfined value $f^{\prime}_c$ (at infinite eccentricity) as a function of the ratio of compression area to total area of each eccentricity. This approach is used to implement an adaptive Mander model for analyzing eccentrically loaded columns. Generalization of the 3D moment of area approach is implemented based on proportional loading, fiber model and the secant stiffness approach, in an incremental-iterative numerical procedure to achieve the equilibrium path of $P-{\varepsilon}$ and $M-{\varphi}$ response up to failure. This numerical analysis is adapted to assess the confining effect in rectangular columns confined with conventional lateral steel. This analysis is validated against experimental data found in the literature showing good correlation to the partial confinement model while rendering the full confinement treatment unsafe.

Effect of Photoperiod, Temperature and True-leaf Stage in Bolting Rate of Chicory (Cichorium intybus L. var. sativus)

  • Lim, Jung-Dae;Seo, Jeong-Sik;Lee, Hyeon-Yong;Kim, Jong-Dai;Lee, Jin-Ha;Yu, Chang-Yeon
    • Plant Resources
    • /
    • v.7 no.1
    • /
    • pp.29-35
    • /
    • 2004
  • Root chicory (Cichorium intybus L. var. sativus) is potential alternative medicinal and sugar crop which accumulates a high amount of linear polyfructan, inulin in its roots. A problem in root production is that over-wintered stock plants often flower. Once the plant becomes reproductive, stem elongation and root growth slows and floral buds arise from every node, rendering the plants useless for propagation. The objectives of this research was to examine the effectiveness of manipulating environmental factors containing photoperiod, temperature and number of leaf states. The experiment was performed in growth chamber to create two photoperiods (8 h, and 16 h) with three temperature regimes (5$^{\circ}C$/3$^{\circ}C$, 1$0^{\circ}C$/8$^{\circ}C$ and 15$^{\circ}C$/13$^{\circ}C$ day/night temperature) for a total of six treatments on three type of true-leaf stage of plant. Data of bolting rate, shoot and root length, shoot and fresh weight was invetigated in each treatments. This is the first report on changes in bolting rate and shoots and roots production during a whole growing season and differences in the effect of cold and photoperiod treatment depending on the true-leaf stage of plant.

  • PDF