• Title/Summary/Keyword: Renal Vein

Search Result 149, Processing Time 0.032 seconds

A Case of Renal Vein Thrombosis Associated with Nephrotic Syndrome (방사선학적으로 확진된 신증후군과 동반된 신정맥 혈전증 1예)

  • Jung, Kyung-Hwa;Byun, Woo-Mok;Chang, Jae-Chun
    • Journal of Yeungnam Medical Science
    • /
    • v.4 no.2
    • /
    • pp.179-184
    • /
    • 1987
  • Renal vein thrombosis is usually a complication of multiple underlying renal disease rather than primary process. High incidence of renal vein thrombosis in patients with nephrotic syndrome, which suggest the nephrotic syndrome play a paramount role in the genesis of renal vein thrombosis or thromboembolic phenomena. But these are likely to relationship of "egg and chicken", and then we cannot determine what is primary of these. Recently authors experienced a case that was questioned renal vein thrombosis with nephrotic-syndrome clinically, laboratory and preliminary radiologically, and this case is confirmed by selective left renal venography. Here we report a case of renal vein thrombosis with nephrotic syndrome which successfully managed with oral anticoagulants and reviewed literatures.

  • PDF

Studies on the Mechanism of Renal Action Induced by Idnzoxan, $\alpha$$_2$-Adrenergic Antagonist, in Dog ($\alpha$$_2$-교감신경 수용체 차단제인 Idazoxan의 신장작용의 기전에 관한 연구)

  • 고석태;강경원
    • Biomolecules & Therapeutics
    • /
    • v.8 no.2
    • /
    • pp.125-131
    • /
    • 2000
  • Idazoxan, $\alpha$$_2$-adrenergic antagonist, produced antidiuretic action by administration into the vein and diuretic action only in ipsilateral kidney by injection into a renal artery in dog. These studies were performed for investigation of mechanism on the renal action induced by idazoxan. Antiduretic action by idazoxan given into vein and diuretic action only in ipsilateral kidney by idazoxan injected into a renal artery were blocked entirely by renal denervation. Antidiuretic action of idazoxan given into the vein was weakened by UK 14,304, $\alpha$$_2$-adrenergic agonist, pretreated into the vein. Above results suggest that antidiuretic action of idazoxan given into the vein is caused by blocking of $\alpha$$_2$-adrenergic receptor, diuretic action only in ipsilateral kidney of idazoxan injected into a renal artery by blocking of $\alpha$$_2$-adrenergic receptor in the kidney.

  • PDF

Effect of 5-Hydroxytryptamine(5-HT) on Renal Function in Dog (5-Hydroxytryptamine(5-HT)이 개의 신장기능에 미치는 영향)

  • Ko, Suk-Tai;Na, Han-Kwang;Choe, In
    • Biomolecules & Therapeutics
    • /
    • v.4 no.1
    • /
    • pp.7-18
    • /
    • 1996
  • 5-Hydroxytryptamine(5-HT, serotonin), when given into the vein, produced antidiuretic action accompanied with reduction of glomerular filtration(GFR), renal plasma flow(RPF), osmolar clearance(Cosm) and amounts of sodium or potassium excreted in urine( $E_{Na}$ , $E_{K}$), with the augmented reabsorption rates of sodium and potassium in renal tubules. 5-HT, when infused into a renal artery, exhibited diuretic action accompanied with the augmented RPF and increased $E_{Na}$ and $E_{K}$ in only infused kidney. Antidiuretic action of 5-HT infused into the vein was not influenced by ketanserin, 5-H $T_2$receptor blockade, given into a renal artery, vein or carotid artery, by methysergide, 5-H $T_1$receptor blockade, given into a renal artery, whereas above antidiuretic action was inhibited by methysergide given into vein or carotid artery. Diuretic action of 5-HT infused into a renal artery in only experimental kidney was blocked by ketanserin injected into a renal artery, was not influenced by methysergide administered into a renal artery. Above results suggest that 5-hydroxytryptamine(5-HT) produced the antidiuretic action through central 5-H $T_1$receptor and the diuretic action through 5-H $T_2$receptor located in renal tubules of kidney.ney.

  • PDF

Effects of Jeo Ryong-tang water Extract on Renal Function in Rabbit and Dog (저령탕전탕액(猪令湯煎湯液)이 가토(家兎) 및 개의 신장기능(腎臟機能)에 미치는 영향(影響))

  • Jo, Sang-Seop
    • Journal of Sasang Constitutional Medicine
    • /
    • v.2 no.1
    • /
    • pp.213-221
    • /
    • 1990
  • Effect of Jeo Ryong-Tang water Extract on Renal Function in Rabbit and Dog. In order to investigate the Pharmacological action of Jeo Ryoung-Tang on renal function, this study was performed in rabbit and dog, making use of it's water extract. Jeo Ryoung-Tang water extract (JRWE), when given into ear vein of rabbits, produced diuresis in a small dose, but antidiuresis in a large dose. Diuretic action of JRWE accompanied the increase of glomerular filtration rate (GFR), renal plasma flow (RPF) and amounts of $Na^+$ in exdreated in urin, but fractional excretion of filtered $Na^+$ was not changed. JRWE, when injected into proleg's vein of dog, produced diuresis, At this time, changes of renal function were similar to that of diuresis in rabbit. JRWE, when infused into a renal artery of dog, exhibited the diuresis in both kidney. It is thought that JRWE, when given into vein of rabbit or dog, induces the diuresis, and the mechanism of it's diuresis is the increase of renal plasma flow through secondary action by some endogenous humoural substance.

  • PDF

Distribution of Renal Vein within Kidney of Korean Native Goat (한국 재래산양의 신정맥 분포에 관하여)

  • Kim, Chong Sup;Park, Joong Suk
    • The Korean Journal of Zoology
    • /
    • v.20 no.3
    • /
    • pp.141-147
    • /
    • 1977
  • The distribution of renal veins of fifty Korean native goats(100 kidneys) was observed. The results obtained were as follows: 1. In all goats a single renal vein, both on the left and right sides, emerged from the hilus of the kidney and then entered the posterior vena cava. 2. The ventral and dorsal surfaces of the kidney were drained through several segmental veins. These segmental veins were grouped into 2-3 Rami to formed the main trunk of the renal vein. The segmental veins drained into Rami dorsalis and ventralis, in 56 percentage of the left and 64 percentage of the right kidney and the remainder goats drained into Rami cranialis and caudalis; Rami cranialis, medius and caudalis; Rami ventralis, medius and dorsalis. 3. The ventral and dorsal surfaces of the kidney were divided into 2-4 venous segments. Among them three segments were mostly frequent (55 percentage). 4. A common segment vein was drained both dorsal and ventral surfaces at the cranial, caudal pole, and both poles. The frequency of the common segment was 32 percentage at the cranial, 18 percentage at the caudal pole, and 14 percentage at the both poles. 5. A polar renal vein was not observed. 6. The renal veins and the renal arteries did not match in arrangement and in course.

  • PDF

Effect of Verapamil on Renal Function in Dog (Verapamil이 개의 신장기능에 미치는 영향)

  • 고석태;허영근
    • YAKHAK HOEJI
    • /
    • v.35 no.2
    • /
    • pp.85-98
    • /
    • 1991
  • Verapamil, $Ca^{2+}$-channel blocker, when given into vein or into carotid artery, produced the decrease of urine flow accompanied with the decreased amounts of Na$^{+}$ and $K^{+}$ excreted in urine ($E_{Na}, E_{K}$) and with the decreased clearances of free water (C$_{H_2O}$) and osmolar substance (C$_{osm}$), and then increased reabsorption of Na$^{+}$ and $K^{+}$ in renal tubules (R$_{Na}$, R$_{N}$), glomeruler filtration rate (GFR) and renal plasma flow (RPF) were inhibited when verapamil was given into carotid artery, but were only tendency of reduction when given intravenously. Verapamil, when infused into a renal artery, exhibited diuresis accompanied with the increased GER, RPF, E$_{Na}$ and E$_{K}$, with the decreased filtration fraction (FF) in only infused kidney. At the same time, $C_{H_2O}$ was not changed, R$_{Na}$ and R$_{K}$ were reduced. Antidiuretic action by verapamil administered into vein or into carotid artery in normal kidney was reversed to diuretic action in denervated kidney. At this time, parameters of renal function exhibited the opposite phenomena compared to that elicited by verapamil in normal kidney, wherease renal denervation did not influence the action of verapamil infused into a renal artery. Above results suggest that verapamil produce both antidiuresis through nervous system centrally, not endogenous substances and diuresis by direct action in the kidney. Diurectic action are caused by hemodynamic improvement through dilatioon of vas efferense and by greatly inhibited reabsorption of electrolytes in distal tubules.

  • PDF

Effect of Renal Denervation on Renal Action of Diltiazem in Dog (Diltiazem의 신장작용에 대한 신신경제거의 영향)

  • 고석태;유강준;김해석
    • Biomolecules & Therapeutics
    • /
    • v.1 no.1
    • /
    • pp.84-92
    • /
    • 1993
  • This study was performed to elucidate the mechanism of antidiuretic action of diltiazem by infusion into the vein and carotid artery, of diuretic action into a renal artery in dog. Renal denervation caused a reversal of the effect of diltiazem from the antidiuretic to the diuretic when infused into vein or carotid artery, and potentiated the diuretic effect when infused into a renal artery. The changes of renal function in diuretic circumstances as described above included the increase in renal plasma flow, osmolar clearance, the amounts of sodium and potassium excreted in urine and the decrease in reabosrption rate of sodium and potassium in renal tubules. Above results suggest that antidiuretic action of diltiazem may be mediated by central nervous system, not by endogenous substance, diuretic action by direct renal action.

  • PDF

Effects of Acute Renal Ischemia on Aerobic Metabolism of Rabbit Kidney Homogenates (급성 신장 빈혈이 신장의 유기성 대사에 미치는 영향)

  • Kang, Suk-Won
    • The Korean Journal of Physiology
    • /
    • v.6 no.2
    • /
    • pp.9-17
    • /
    • 1972
  • This experiment was carried out to investigate systematically how the aerobic metabolic capacity of renal tissue reduced by the effects of a period of induced ischemia. Aerobic metabolic studies were performed on homogenates of cortex and medulla of rabbits. Ischemia was induced by occluding the renal vein or renal artery of the left kidney for an hour. The right kidney used as a paired control. Aerobic metabolism was asesssed by measuring the oxygen consumption using the Warburg's manometric apparatus. The results are summarized as follows: 1. One hour of occlusive ischemia does not increase in the kidney weight in the renal arterial occlusion but increase in the renal venous occlusion. 2. Occlusion of either the renal vein or renal artery for an hour did not reduce to any significant degree the level of endogenous substrate in cortical homogenates as measured the rates of $0_2$ consumption. 3. A significant reduction in the rate of $C_2$ consumption was noted in the medullary homogenates of renal venous occluded kidneys while renal arterial occlusion had less of an effect. 4. The capaciy of homogenates for aerobic metabolism is not reduced by acute ischemia, because of the higher rate of oxygen consumption induced by exogenous glucose in renal vein occlusion. 5. The oxygen consumption of medullary homogenate more decreased to acute ischemia than cortical homogenates. The results of this investigation suggest that one hour circulatory stasis does not reduce major potential capacity of renal cortical tissue at the subcellular level to produce energy. In contrast, the aerobic metabolism of medullary tissue is reduced by renal ischemia. Further, both cortex and medulla appear to be more sensitive to ischemia induced by renal venous occlusion than by renal arterial occlusion.

  • PDF

Effect of Glibenclamide, $K^+$ Channel Blocker, on Renal Function in Rabbit (토끼의 신장기능에 미치는 $K^+$ Channel 차단제인 Glibenclamide의 영향)

  • 고석태;나종학
    • Biomolecules & Therapeutics
    • /
    • v.9 no.1
    • /
    • pp.26-32
    • /
    • 2001
  • This study was investigated about the effect of glibenclamide (GLY) which is $K^{+}$ channel blocker on renal function in rabbit, GLY, when given into the vein, produced the diuretic action accompanied with the increases of amounts of N $a^{+}$ and $K^{+}$ excreted into urine ( $E_{Na}$ , $E^{K}$), and then osmolar and negative free water clearances ( $C_{osm}$, $T^{C}$$_{H2O}$), fraction excretory rates of filtered N $a^{+}$ and $K^{+}$ ( $F_{Na}$ , $F_{K}$) and ratios of $E_{K}$ against $E_{Na}$ were augmented. Filtration fraction (FF) were reduced because renal plasma flow (RPF) were not changed but glomerular filtration rates (GFR) were diminished. GLY administered into a renal artery exhibited significant reduction of urine volume along with the decreases of GFR and RPF in only experimented kidney whereas changes of renal function was not observed in control kidney. GLY given intracerebroventricularly exhibited diuretic action along with the increase of $E_{Na}$ , $E_{K}$ and $F_{Na}$ , $F_{K}$ by small dose which was not affect on renal function when it given into the vein. Above results suggest that GLY given into the vein in rabbit produce the diuretic action by inhibition of electrolytes reabsorption in renal tubules through central function. function.n. function.ion.

  • PDF

Effect of Renal Denervation and Glibenclamlde, ATP-dependent $K^+$ Channel Blocker, on Renal Action of SKP-450, $K^+$ Channel Opener, in Dog ($K^+$ Channel 개방제인 SKP-450의 신장작용에 대한 신장 신경제거와 ATP-의존성 $K^+$ Channel 차단제인 Glibenclamide의 영향)

  • 고석태;정지영
    • Biomolecules & Therapeutics
    • /
    • v.8 no.1
    • /
    • pp.53-63
    • /
    • 2000
  • This study was performed to elucited the mechanisms of the antidiuretic action by SKP-450, a $K^+$ channel opener, given into the vein, and of the diuretic action observed only in the ipsilateral kidney, when given into a renal artery, in dog. The antidiuretic action of SKP-450 was not affected by renal denervation or pretreatment with glibenclamide, a ATP-dependent $K^+$ channel blocker. The diuretic action of SKP-450 was inhibited by renal denervation or pretreatment with glibenclamide. SKP-450 given into carotid artery had little effect on renal function. These results suggest that the antidiuretic action of SKP-450 given into the vein is caused by some endogenous substances probably not related to $K^+$ channel, whereas the diuretic action of SKP-450 observed only in ipsilateral kidney, when given into a renal artery, is provoked through $K^+$ channel related to renal nerves.

  • PDF