• Title/Summary/Keyword: Remote communication

Search Result 1,806, Processing Time 0.027 seconds

A study on the implementation of Medical Telemetry systems using wireless public data network (무선공중망을 이용한 의료 정보 데이터 원격 모니터링 시스템에 관한 연구)

  • 이택규;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.278-283
    • /
    • 2000
  • As information communication technology developed we could check our blood pressure, pulsation electrocardiogram, SpO2 and blood test easily at home. To check our health at ordinary times is able though interlocking the house medical instrument with the wireless public data network This service will help the inconvenience to visit the hospital everytime and will save the individual's time and cost. In each house an organism data which is detected from the human body will be transmitted to the distance hospital and will be essentially applied through wireless public data network The medical information transmit system is utilized by wireless close range network It would transmit the obtained organism signal wirelessly from the personal device to the main center system in the hospital. Remote telemetry system is embodied by utilizing wireless media access protocol. The protocol is embodied by grafting CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance) protocol falling mode which is standards from IEEE 802.11. Among the house care telemetry system which could measure blood pressure, pulsation, electrocardiogram, SpO2 the study embodies the ECC(electrocardiograph) measure part. It within the ECC function into the movable device and add 900㎒ band wireless public data interface. Then the aged, the patients even anyone in the house could obtain ECG and keep, record the data. It would be essential to control those who had a health-examination heart diseases or more complicated heart diseases and to observe the latent heart disease patient continuously. To embody the medical information transmit system which is based on wireless network. It would transmit the ECG data among the organism signal data which would be utilized by wireless network modem and NCL(Native Control Language) protocol to contact through wireless network Through the SCR(Standard Context Routing) protocol in the network it will be connected to the wired host computer. The computer will check the recorded individual information and the obtained ECC data then send the correspond examination to the movable device. The study suggests the medical transmit system model utilized by the wireless public data network.

  • PDF

A Study on The RFID/WSN Integrated system for Ubiquitous Computing Environment (유비쿼터스 컴퓨팅 환경을 위한 RFID/WSN 통합 관리 시스템에 관한 연구)

  • Park, Yong-Min;Lee, Jun-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.1
    • /
    • pp.31-46
    • /
    • 2012
  • The most critical technology to implement ubiquitous health care is Ubiquitous Sensor Network (USN) technology which makes use of various sensor technologies, processor integration technology, and wireless network technology-Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN)-to easily gather and monitor actual physical environment information from a remote site. With the feature, the USN technology can make the information technology of the existing virtual space expanded to actual environments. However, although the RFID and the WSN have technical similarities and mutual effects, they have been recognized to be studied separately, and sufficient studies have not been conducted on the technical integration of the RFID and the WSN. Therefore, EPCglobal which realized the issue proposed the EPC Sensor Network to efficiently integrate and interoperate the RFID and WSN technologies based on the international standard EPCglobal network. The proposed EPC Sensor Network technology uses the Complex Event Processing method in the middleware to integrate data occurring through the RFID and the WSN in a single environment and to interoperate the events based on the EPCglobal network. However, as the EPC Sensor Network technology continuously performs its operation even in the case that the minimum conditions are not to be met to find complex events in the middleware, its operation cost rises. Moreover, since the technology is based on the EPCglobal network, it can neither perform its operation only for the sake of sensor data, nor connect or interoperate with each information system in which the most important information in the ubiquitous computing environment is saved. Therefore, to address the problems of the existing system, we proposed the design and implementation of USN integration management system. For this, we first proposed an integration system that manages RFID and WSN data based on Session Initiation Protocol (SIP). Secondly, we defined the minimum conditions of the complex events to detect unnecessary complex events in the middleware, and proposed an algorithm that can extract complex events only when the minimum conditions are to be met. To evaluate the performance of the proposed methods we implemented SIP-based integration management system.

Status of Agrometeorological Information and Dissemination Networks (농업기상 정보 및 배분 네트워크 현황)

  • Jagtap, Shrikant;Li, Chunqiang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.2
    • /
    • pp.71-84
    • /
    • 2004
  • There is a growing demand for agrometeorological information that end-users can use and not just interesting information. lo achieve this, each region/community needs to develop and provide localized climate and weather information for growers. Additionally, provide tools to help local users interpret climate forecasts issued by the National Weather Service in the country. Real time information should be provided for farmers, including some basic data. An ideal agrometeorological information system includes several components: an efficient data measuring and collection system; a modern telecommunication system; a standard data management processing and analysis system; and an advanced technological information dissemination system. While it is conventional wisdom that, Internet is and will play a major role in the delivery and dissemination of agrometeorological information, there are large gaps between the "information rich" and the "information poor" countries. Rural communities represent the "last mile of connectivity". For some time to come, TV broadcast, radio, phone, newspaper and fax will be used in many countries for communication. The differences in achieving this among countries arise from the human and financial resources available to implement this information and the methods of information dissemination. These differences must be considered in designing any information dissemination system. Experience shows that easy across to information more tailored to user needs would substantially increase use of climate information. Opportunities remain unexplored for applications of geographical information systems and remote sensing in agro meteorology.e sensing in agro meteorology.

A Study on the Legislation for the Commercial and Civil Unmanned Aircraft System Operation (국내 상업용 민간 무인항공기 운용을 위한 법제화 고찰)

  • Kim, Jong-Bok
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.28 no.1
    • /
    • pp.3-54
    • /
    • 2013
  • Nowadays, major advanced countries in aviation technology are putting their effort to develop commercial and civil Unmanned Aircraft System(UAS) due to its highly promising market demand in the future. The market scale of commercial and civil UAS is expected to increase up to approximately 8.8 billon U.S. dollars by the year 2020. The usage of commercial and civil UAS covers various areas such as remote sensing, relaying communications, pollution monitoring, fire detection, aerial reconnaissance and photography, coastline monitoring, traffic monitoring and control, disaster control, search and rescue, etc. With the introduction of UAS, changes need to be made on current Air Traffic Management Systems which are focused mainly manned aircrafts to support the operation of UAS. Accordingly, the legislation for the UAS operation should be followed. Currently, ICAO's Unmanned Aircraft System Study Group(UASSG) is leading the standardization process of legislation for UAS operation internationally. However, some advanced countries such as United States, United Kingdom, Australia have adopted its own legislation. Among these countries, United States is most forth going with President Obama signing a bill to integrate UAS into U.S. national airspace by 2015. In case of Korea, legislation for the unmanned aircraft system is just in the beginning stage. There are no regulations regarding the operation of unmanned aircraft in Korea's domestic aviation law except some clauses regarding definition and permission of the unmanned aircraft flight. However, the unmanned aircrafts are currently being used in military and under development for commercial use. In addition, the Ministry of Land, Infrastructure and Transport has a ambitious plan to develop commercial and civil UAS as Korea's most competitive area in aircraft production and export. Thus, Korea is in need of the legislation for the UAS operation domestically. In this regards, I personally think that Korea's domestic legislation for UAS operation will be enacted focusing on following 12 areas : (1)use of airspace, (2)licenses of personnel, (3)certification of airworthiness, (4)definition, (5)classification, (6)equipments and documents, (7)communication, (8)rules of air, (9)training, (10)security, (11)insurance, (12)others. Im parallel with enacting domestic legislation, korea should contribute to the development of international standards for UAS operation by actively participating ICAO's UASSG.

  • PDF

Detection of flash drought using evaporative stress index in South Korea (증발스트레스지수를 활용한 국내 돌발가뭄 감지)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Mark, D. Svoboda;Brian, D. Wardlow
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.577-587
    • /
    • 2021
  • Drought is generally considered to be a natural disaster caused by accumulated water shortages over a long period of time, taking months or years and slowly occurring. However, climate change has led to rapid changes in weather and environmental factors that directly affect agriculture, and extreme weather conditions have led to an increase in the frequency of rapidly developing droughts within weeks to months. This phenomenon is defined as 'Flash Drought', which is caused by an increase in surface temperature over a relatively short period of time and abnormally low and rapidly decreasing soil moisture. The detection and analysis of flash drought is essential because it has a significant impact on agriculture and natural ecosystems, and its impacts are associated with agricultural drought impacts. In South Korea, there is no clear definition of flash drought, so the purpose of this study is to identify and analyze its characteristics. In this study, flash drought detection condition was presented based on the satellite-derived drought index Evaporative Stress Index (ESI) from 2014 to 2018. ESI is used as an early warning indicator for rapidly-occurring flash drought a short period of time due to its similar relationship with reduced soil moisture content, lack of precipitation, increased evaporative demand due to low humidity, high temperature, and strong winds. The flash droughts were analyzed using hydrometeorological characteristics by comparing Standardized Precipitation Index (SPI), soil moisture, maximum temperature, relative humidity, wind speed, and precipitation. The correlation was analyzed based on the 8 weeks prior to the occurrence of the flash drought, and in most cases, a high correlation of 0.8(-0.8) or higher(lower) was expressed for ESI and SPI, soil moisture, and maximum temperature.

Performance Optimization of Numerical Ocean Modeling on Cloud Systems (클라우드 시스템에서 해양수치모델 성능 최적화)

  • JUNG, KWANGWOOG;CHO, YANG-KI;TAK, YONG-JIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.3
    • /
    • pp.127-143
    • /
    • 2022
  • Recently, many attempts to run numerical ocean models in cloud computing environments have been tried actively. A cloud computing environment can be an effective means to implement numerical ocean models requiring a large-scale resource or quickly preparing modeling environment for global or large-scale grids. Many commercial and private cloud computing systems provide technologies such as virtualization, high-performance CPUs and instances, ether-net based high-performance-networking, and remote direct memory access for High Performance Computing (HPC). These new features facilitate ocean modeling experimentation on commercial cloud computing systems. Many scientists and engineers expect cloud computing to become mainstream in the near future. Analysis of the performance and features of commercial cloud services for numerical modeling is essential in order to select appropriate systems as this can help to minimize execution time and the amount of resources utilized. The effect of cache memory is large in the processing structure of the ocean numerical model, which processes input/output of data in a multidimensional array structure, and the speed of the network is important due to the communication characteristics through which a large amount of data moves. In this study, the performance of the Regional Ocean Modeling System (ROMS), the High Performance Linpack (HPL) benchmarking software package, and STREAM, the memory benchmark were evaluated and compared on commercial cloud systems to provide information for the transition of other ocean models into cloud computing. Through analysis of actual performance data and configuration settings obtained from virtualization-based commercial clouds, we evaluated the efficiency of the computer resources for the various model grid sizes in the virtualization-based cloud systems. We found that cache hierarchy and capacity are crucial in the performance of ROMS using huge memory. The memory latency time is also important in the performance. Increasing the number of cores to reduce the running time for numerical modeling is more effective with large grid sizes than with small grid sizes. Our analysis results will be helpful as a reference for constructing the best computing system in the cloud to minimize time and cost for numerical ocean modeling.