DOI QR코드

DOI QR Code

Rural Systems Visioneering: Paradigm Shift from Flux Measurement to Sustainability Science

지역시스템 비저니어링: 플럭스 관측에서 지속가능성과학으로의 패러다임 전환

  • Kim, Joon (Department of Landscape Architecture and Rural Systems Engineering, Seoul National University) ;
  • Kang, Minseok (National Center for Agro Meteorology) ;
  • Oki, Taikan (Institute of Industriasl Science, University of Tokyo) ;
  • Park, Eun Woo (National Center for Agro Meteorology) ;
  • Ichii, Kazuhito (Center for Environmental Remote Sensing, Chiba University) ;
  • Indrawati, Yohana Maria (Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University) ;
  • Cho, Sungsik (Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University) ;
  • Moon, Jihyun (E3 Empower Africa Limited) ;
  • Yoo, Wan Chol (E3 Empower Africa Limited) ;
  • Rhee, Jiyoung (Innovative Technology Energy Centre (iTEC), Nelson-Mandela African Institutition of Science and Technology) ;
  • Rhee, Herb (E3 Empower Africa Limited) ;
  • Njau, Karoli (Office of the Vice Chancellor, Nelson-Mandela African Institution of Science and Technology) ;
  • Ahn, Sunghoon (Innovative Technology Energy Centre (iTEC), Nelson-Mandela African Institutition of Science and Technology)
  • Received : 2018.03.27
  • Accepted : 2018.03.29
  • Published : 2018.03.30

Abstract

Sustainability science is an emerging transdisciplinary research which necessitates not only the communication and collaboration of scientists, practitioners and stakeholders from different disciplines and interests, but also the paradigm shift from deterministic and reductionist approaches to the old basic. Ecological-societal systems (ESS) are co-evolving complex systems having many interacting parts (or agents) whose random interactions at local scale give rise to spontaneous emerging order at global scale (i.e., self-organization). Here, the flows of energy, matter and information between the systems and their surroundings play a key role. We introduce a conceptual framework for such continually morphing dynamical systems, i.e. self-organizing hierarchical open systems (SOHOs). To understand the structure and functionality of SOHOs, we revisit the two fundamental laws of physics. Re-interpretation of these principles helps understand the destiny and better path toward sustainability, and how to reconcile ecosystem integrity with societal vision and value. We then integrate the so-called visioneering (V) framework with that of SOHOs as feedback/feedforward loops so that 'a nudged self-organization' may guide systems' agents to work together toward sustainable ESS. Finally, example is given with newly endorsed Sustainable Development Goals (SDG) Lab (i.e., 'Rural systems visioneering') by Future Earth, which is now underway in rural villages in Tanzania.

지속가능성과학은 다양한 학문 배경과 관심을 가진 과학자, 전문직 종사자 및 이해당사자들 간의 소통과 협력뿐 아니라 결정론적 환원주의적 접근에서 오래전 기본으로의 패러다임 전환이 요구되는 떠오르는 초학문적 연구다. 생태-사회시스템은 많은 구성성분(또는 행위자)들로 이루어져 이들의 국지 규모의 무작위 상호작용이 자연스럽게 시스템 전체 규모의 질서를 만들어내는 공진화하는 복잡계다. 여기서, 시스템과 주변환경 간의 에너지와 물질과 정보의 흐름이 중요한 역할을 한다. 본 통신에서는 이렇게 계속 변화하는 역동적 시스템, 즉 '자기-조직화하는 계층구조의 열린 시스템(SOHOs)'의 개념적 틀을 소개한다. 먼저 SOHOs의 구조와 기능성을 이해하기 위해 물리학의 두 기본 법칙을 다시 논의한다. 두 법칙의 재해석을 통해 시스템의 운명과 지속가능성을 향한 보다 나은 경로, 또한 생태계의 온전함과 사회의 비전/가치 추구를 어떻게 조화시킬 것인가에 대한 이해를 돕고자한다. 그 다음에 소위 '비저니어링(V)'이라는 틀을 되먹임/전방급전(feedback/feedforward) 루프로 SOHOs 틀에 통합시켜서, '슬쩍 찌르는(nudged) 자기-조직화'가 시스템을 구성하는 행위자들이 합력하여 지속가능한 생태-사회 시스템을 이루어 가도록 유도한다. 마지막으로, SOHOs-V의 적용사례로서, 현재 탄자니아의 농촌마을에서 진행되고 있는 미래지구의 지속가능발전목표 연구실(SDG Lab)인 '농촌시스템 비저니어링(Rural Systems Visioneering)'을 예로 제시하였다.

Keywords

References

  1. Anthes, R. A., 1993: The global trajectory. Bulletin of American Meteorological Society 74, 1121-1130.
  2. Anttila, J., and A. Annila., 2011: Natural games. Physics Letters A 375(43), 3755-3761. https://doi.org/10.1016/j.physleta.2011.08.056
  3. Ash, N., H. Blanco, C. Brown, K. Garcia, T. Henrichs, N. Lucas, C. Raudsepp-Hearne, R. D. Simpson, R. Scholes, T. Tomich, B. Vira, and M. Zurek, 2010: Ecosystems and human well-being: a manual for assessment practitioners. Island Press, Washington.
  4. Brundiers, K., and A. Wiek, 2010: Educating students in real-world sustainability research: vision and implementation. Innovative Higher Education 36, 107-124. DOI: 10.1007/s10755-010-9161-9
  5. Campbell, G. S, and J. M. Norman, 1998: An introduction to environmental biophysics. Springer, New York
  6. Chaisson, E. J., 2001: Cosmic evolution: the rise of complexity in nature. Harvard University Press, Cambridge, Massachusetts.
  7. Chapin FS III, G. P, Kofinas, C. Folke, 2009: Principles of ecosystem stewardship: resilience-based natural resource management in a changing world. Springer, Berlin.
  8. Chatterjee, A., 2016a: Energy, entropy and complexity: thermodynamic and information-theoretic perspectives on aging. In: Kyriazis, M. (Eds.) Challenging Ageing - The Anti-senescence Effects of Hormesis, Environmental Enrichment and Information Exposure. Bentham Science Publishers. 305pp.
  9. Chatterjee, A., 2016b: Thermodynamics of action and organization in a system. Complexity 21(S1), 307-317.
  10. Chen, J., 2005: The physical foundation of economics: An analytical thermodynamic theory. World Scientific.
  11. Correia, L., 2006: Self-organization: a case for embodiment. In: Proceedings of The Evolution of Complexity Workshop at Artificial Life X: The 10th International Conference on the Simulation and Synthesis of Living Systems, 111-116.
  12. Cote, M., and A. J. Nightingale, 2011: Resilience thinking meets social theory: situating social change in socio-ecological systems (SES) research. Progress in Human Geography, 1-15.
  13. Deacon, T. W., 2011: Incomplete nature: how mind emerged from matter. W. W. Norton & Company, New York.
  14. Dincer, I., and Y. A. Cengel, 2001: Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy 3, 116-149. https://doi.org/10.3390/e3030116
  15. Dodig-Crnkovic, G., 2012: Physical computation as dynamics of form that glues everything together. Information 3, 204-218. https://doi.org/10.3390/info3020204
  16. Folke, C., A. Jansson, J. Rockstrom, P. Olsson, S. Carpenter, F. Chapin, A. S. Crepin, G. Daily, K. Danell, J. Ebbesson, T. Elmqvist, V. Galaz, F. Moberg, M. Nilsson, H. Osterblom, E. Ostrom, A. Persson, G. Peterson, S. Polasky, W. Steffen, B. Walker, and F. Westley, 2011: Reconnecting to the biosphere. AMBIO: A Journal of the Human Environment 40(7), 719-738. DOI: 10.1007/s13280-011-0184-y.
  17. Georgiev, G. Y., and A. Chatterjee, 2016: The road to a measurable quantitative understanding of self-organization and evolution. In: Gerard AJM Jagers op Akkerhuis (ed) Evolution and Transitions in Complexity. Springer, Switzerland. 223-232.
  18. Gleick, J., 2011: The information: a history, a theory, a flood. Harper Collins Publishers.
  19. Grothmann, T., M. Petzold, P. Ndaki, V. Kakembo, B. Siebenhuner, M. Kleyer, P. Yanda, and N. Ndou, 2017: Vulnerability assessment in african villages under conditions of land use and climate change: Case studies from Mkomazi and Keiskamma. Sustainability 9(6), 976pp. https://doi.org/10.3390/su9060976
  20. Harte, J., 2002: Toward a synthesis of the Newtonian and Darwinian worldviews. Physics Today 29, 29-34.
  21. Harte, J., 2011: Maximum entropy and ecology: a theory of abundance, distribution, and energetics. Oxford University Press, London.
  22. Hammond, G. P., and A. B. Winnett, 2009: The influence of thermodynamic ideas on ecological economics: an interdisciplinary critique. Sustainability 1, 1195-1225. https://doi.org/10.3390/su1041195
  23. Heylighen, F., 2011: Self-organization of complex, intelligent systems: an action ontology for transdisciplinary integration. Integral Review, 1-39.
  24. Janhonen-Abruquah, H., J. Topp, and H. Posti-Ahokas, 2018: Educating professionals for sustainable futures. Sustainability 10(3), 592pp.
  25. Jorgensen, S. E., 2006: Eco-exergy as sustainability (Vol. 16). Wit Press.
  26. Kang, M., B. L. Ruddell, C. Cho, J. Chun, and J. Kim, 2017: Identifying $CO_2$ advection on a hill slope using information flow. Agricultural and Forest Meteorology 232, 265-278. https://doi.org/10.1016/j.agrformet.2016.08.003
  27. Jorgensen, S. E, and B. D. Fath, 2007: A new ecology: systems perspective.
  28. Kay, J. J., and M. Boyle, 2008: Self-organizing, holarchic, open systems (SOHOs). In: Waltner-Toews, D., J. J. Kay, and N. E. Lister (Eds) The ecosystem approach: Complexity, uncertainty, and managing for sustainability. Columbia University Press, New York, 52-78.
  29. Kim, J., and T. Oki, 2011: Visioneering: an essential framework in sustainability science. Sustainability Science 6, 247-251. https://doi.org/10.1007/s11625-011-0130-8
  30. Kim, J., J. Yun, J. Hong, H. Kwon, and J. Chun, 2011: Ecohydrologic and biogeochemical process networks in forest ecosystems in monsoon East Asia. In: Lenaerts, T., M. Giacobini, H. Bersini, P. Bourgine, M. Dorigo, R. Doursat (Eds) Advances in artificial life -ECAL 2011. The MIT Press, 412-413.
  31. Kleidon, A., 2012: How does the Earth system generate and maintain thermodynamic disequilibrium and what does it imply for the future of the planet?. Philosophical Transactions of the Royal Society A 370, 1012-1040. https://doi.org/10.1098/rsta.2011.0316
  32. Kleidon, A., E. Zehe, U. Ehret, and U. Scherer, 2013: Thermodynamics, maximum power, and the dynamics of preferential river flow structures at the continental scale. Hydrology and Earth System Sciences 17, 225-251.
  33. Kumar, P., and B. L. Ruddell, 2010: Information driven ecohydrologic self-organization. Entropy 12(10), 2085-2096. https://doi.org/10.3390/e12102085
  34. Lang, D. J., A. Wiek, M. Bergmann, M. Stauffacher, P. Marlens, P. Moll, M. Swilling, and C. J. Thomas, 2012: Transdisciplinary research in sustainability science: practice, principles, and challenges. Sustainability Science 7, 25-43. https://doi.org/10.1007/s11625-011-0149-x
  35. Lee, J. Y., 2015: Micro-mission Micro-Enterprise. (in Korean) 도서출판 샘솟는 기쁨.
  36. Logan, R. K., 2013: Ulanowicz's process ecology, duality and emergent deism. Open Journal of Philosophy 3, 422-428.
  37. Meadows, D., 2008: Thinking in systems: a primer. Chelsea Green, Vermont.
  38. Meadows, D., J. Randers, and D. Meadows, 2004: Limits to growth: the 30-year update. Chelsea Green, White River Junction.
  39. Mitchell, M., 2009: Complexity: a guided tour. Oxford University Press, New York.
  40. Mooney, H. A., A. Duraiappah, and A. Larigauderie, 2012: Evolution of natural and social science interactions in global change research programs. Proceedings of National Academy of Science, www.pnas.org/cgi/doi/10.1073/pnas.1107484110.
  41. Nicholas, G. R., 1971: The entropy law and the economic process. Harvard University Press.
  42. O'Brien, K., A. Patwardhan, M. Pelling, S. Hallegatte, A. Maskrey, T. Oki, U. Oswald-Spring, T. Wilbanks, P. Z. Yanda with contributing authors F. Berkhaut, R. Biggs, H.G. Brauch, K. Brown, C. Folke, L. Harrington, H. Kunreuther, C. Lacambra, R. Leichenko, R. Mechler, C. Pahl-Wostl, V. Przyluski, D. Satterthwaite, F. Sperling, L. Sygna, T. Tanner, P. Tschakert, K. Ulsrud, V. Viguie, 2012: Toward a sustainable and resilient future. In: Field, C. B., V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. J. Mach, G.-K. Plattner, S. K. Allen, M. Tignor, and P. M. Migley (Eds.) Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, 437-486.
  43. Page, S. E., 2008: The difference: how the power of diversity creates better groups, firms, schools, and societies. Princeton University Press, New Jersey.
  44. Prigogine, I., 1980: From being to becoming: time and complexity in the physical sciences. Freeman.
  45. Prokopenko, M., F. Boschetti, and A. J. Ryan, 2009: An information-theoretical primer on complexity, self-organizatoin, and emergence. Complexity 15, 11-28, doi:10.1002/cplx.20249.
  46. Rifkin, J., 2009: The empathic civilization: the race to global consciousness in a world in crisis. Tarcher/Penguin, New York.
  47. Ruddell, B. L., and P. Kumar, 2009a: Ecohydrologic process networks: 1. Identification. Water Resources Research 45, W03419. DOI:10.1029/2008WR007279.
  48. Ruddell, B. L., and P. Kumar, 2009b: Ecohydrologic process networks: 2. Analysis and characterization. Water Resources Research 45, W03420. DOI:10.1029/2008WR007280.
  49. Ruddell, B. L., N. A. Brunsell, and P. C. Stoy, 2013: Applying information theory in the geosciences to quantify process uncertainty, feedback, scale. EOS 94, 56-57. https://doi.org/10.1002/2013EO050007
  50. Ruth, M., 1996: Evolutionary economics at the crossroads of biology and physics. Journal of Social and Evolutionary Systems 19, 125-144. https://doi.org/10.1016/S1061-7361(96)90021-1
  51. Ruth, M., E. Kalnay, N. Zeng, R. S. Franklin, J. Rivas, and F. Miralles-Wilhelm, 2011: Sustainable prosperity and societal transitions: long-term modeling for anticipatory management. Environmental Innovation and Societal Transitions 1, 160-165.
  52. Sandel, M. J., 2009: Justice: what's the right thing to do?. Farrar, Straus and Giroux, New York.
  53. Standish, R. K., 2001: On complexity and emergence. Complexity International 9, arXiv: nlin.AO/0101006.
  54. Ulanowicz, R.E., 2009: A third window: natural life beyond Newton and Darwin. Templeton Foundation Press, West Conshohocken.
  55. van Benthem, J., 2011: Logical dynamics of information and interaction. Cambridge University Press, Cambridge.
  56. Waltner-Toews, D., and J. J. Kay, 2008: Implementing the ecosystem approach: the diamond, AMESH, and their siblings. In: Waltner-Toews, D., J. J. Kay, N. E. Lister (Eds) The ecosystem approach: complexity, uncertainty, and managing for sustainability. Columbia University Press, New York, 239-255.
  57. Waltner-Toews, D., J. J. Kay, and N. E. Lister, 2008: The ecosystem approach: complexity, uncertainty, and managing for sustainability. Columbia University Press, New York.
  58. Wiek, A., L. Withycombe, and C. L. Redman, 2011: Key competences in sustainability: a reference framework for academic program development. Sustainability Science 6, 203-218. https://doi.org/10.1007/s11625-011-0132-6
  59. Willis, A. J., 1997: Forum. Functional Ecology 11(2), 268-271. https://doi.org/10.1111/j.1365-2435.1997.00081.x
  60. Yun, J., M. Kang, S. Kim, J.H. Chun, C.-H. Cho, and J. Kim, 2014a: How is the Process Network Organized and When Does it Show Emergent Properties in a Forest Ecosystem? In: Sanayei, A., I. Zelinka, and O. E. Rossler, (Eds) ISCS 2013: Interdisciplinary Symposium on Complex Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 307-317.
  61. Yun, J., S. Kim, M. Kang, C.-H. Cho, J.-H. Chun, and J. Kim, 2014b: Process networks of ecohydrological systems in a temperate deciduous forest: A complex systems perspective. Korean Journal of Agricultural and Forest Meteorology 16(3), 157-168. https://doi.org/10.5532/KJAFM.2014.16.3.157