Browse > Article
http://dx.doi.org/10.5532/KJAFM.2018.20.1.101

Rural Systems Visioneering: Paradigm Shift from Flux Measurement to Sustainability Science  

Kim, Joon (Department of Landscape Architecture and Rural Systems Engineering, Seoul National University)
Kang, Minseok (National Center for Agro Meteorology)
Oki, Taikan (Institute of Industriasl Science, University of Tokyo)
Park, Eun Woo (National Center for Agro Meteorology)
Ichii, Kazuhito (Center for Environmental Remote Sensing, Chiba University)
Indrawati, Yohana Maria (Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University)
Cho, Sungsik (Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University)
Moon, Jihyun (E3 Empower Africa Limited)
Yoo, Wan Chol (E3 Empower Africa Limited)
Rhee, Jiyoung (Innovative Technology Energy Centre (iTEC), Nelson-Mandela African Institutition of Science and Technology)
Rhee, Herb (E3 Empower Africa Limited)
Njau, Karoli (Office of the Vice Chancellor, Nelson-Mandela African Institution of Science and Technology)
Ahn, Sunghoon (Innovative Technology Energy Centre (iTEC), Nelson-Mandela African Institutition of Science and Technology)
Publication Information
Korean Journal of Agricultural and Forest Meteorology / v.20, no.1, 2018 , pp. 101-116 More about this Journal
Abstract
Sustainability science is an emerging transdisciplinary research which necessitates not only the communication and collaboration of scientists, practitioners and stakeholders from different disciplines and interests, but also the paradigm shift from deterministic and reductionist approaches to the old basic. Ecological-societal systems (ESS) are co-evolving complex systems having many interacting parts (or agents) whose random interactions at local scale give rise to spontaneous emerging order at global scale (i.e., self-organization). Here, the flows of energy, matter and information between the systems and their surroundings play a key role. We introduce a conceptual framework for such continually morphing dynamical systems, i.e. self-organizing hierarchical open systems (SOHOs). To understand the structure and functionality of SOHOs, we revisit the two fundamental laws of physics. Re-interpretation of these principles helps understand the destiny and better path toward sustainability, and how to reconcile ecosystem integrity with societal vision and value. We then integrate the so-called visioneering (V) framework with that of SOHOs as feedback/feedforward loops so that 'a nudged self-organization' may guide systems' agents to work together toward sustainable ESS. Finally, example is given with newly endorsed Sustainable Development Goals (SDG) Lab (i.e., 'Rural systems visioneering') by Future Earth, which is now underway in rural villages in Tanzania.
Keywords
Sustainability science; Ecological-societal systems; Self-organization; Rural systems visioneering; Sustainable Development Goals Lab;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Anthes, R. A., 1993: The global trajectory. Bulletin of American Meteorological Society 74, 1121-1130.
2 Anttila, J., and A. Annila., 2011: Natural games. Physics Letters A 375(43), 3755-3761.   DOI
3 Ash, N., H. Blanco, C. Brown, K. Garcia, T. Henrichs, N. Lucas, C. Raudsepp-Hearne, R. D. Simpson, R. Scholes, T. Tomich, B. Vira, and M. Zurek, 2010: Ecosystems and human well-being: a manual for assessment practitioners. Island Press, Washington.
4 Brundiers, K., and A. Wiek, 2010: Educating students in real-world sustainability research: vision and implementation. Innovative Higher Education 36, 107-124. DOI: 10.1007/s10755-010-9161-9   DOI
5 Campbell, G. S, and J. M. Norman, 1998: An introduction to environmental biophysics. Springer, New York
6 Chaisson, E. J., 2001: Cosmic evolution: the rise of complexity in nature. Harvard University Press, Cambridge, Massachusetts.
7 Chapin FS III, G. P, Kofinas, C. Folke, 2009: Principles of ecosystem stewardship: resilience-based natural resource management in a changing world. Springer, Berlin.
8 Chatterjee, A., 2016a: Energy, entropy and complexity: thermodynamic and information-theoretic perspectives on aging. In: Kyriazis, M. (Eds.) Challenging Ageing - The Anti-senescence Effects of Hormesis, Environmental Enrichment and Information Exposure. Bentham Science Publishers. 305pp.
9 Ruth, M., E. Kalnay, N. Zeng, R. S. Franklin, J. Rivas, and F. Miralles-Wilhelm, 2011: Sustainable prosperity and societal transitions: long-term modeling for anticipatory management. Environmental Innovation and Societal Transitions 1, 160-165.
10 Sandel, M. J., 2009: Justice: what's the right thing to do?. Farrar, Straus and Giroux, New York.
11 Ulanowicz, R.E., 2009: A third window: natural life beyond Newton and Darwin. Templeton Foundation Press, West Conshohocken.
12 van Benthem, J., 2011: Logical dynamics of information and interaction. Cambridge University Press, Cambridge.
13 Waltner-Toews, D., and J. J. Kay, 2008: Implementing the ecosystem approach: the diamond, AMESH, and their siblings. In: Waltner-Toews, D., J. J. Kay, N. E. Lister (Eds) The ecosystem approach: complexity, uncertainty, and managing for sustainability. Columbia University Press, New York, 239-255.
14 Waltner-Toews, D., J. J. Kay, and N. E. Lister, 2008: The ecosystem approach: complexity, uncertainty, and managing for sustainability. Columbia University Press, New York.
15 Yun, J., M. Kang, S. Kim, J.H. Chun, C.-H. Cho, and J. Kim, 2014a: How is the Process Network Organized and When Does it Show Emergent Properties in a Forest Ecosystem? In: Sanayei, A., I. Zelinka, and O. E. Rossler, (Eds) ISCS 2013: Interdisciplinary Symposium on Complex Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 307-317.
16 Chatterjee, A., 2016b: Thermodynamics of action and organization in a system. Complexity 21(S1), 307-317.
17 Chen, J., 2005: The physical foundation of economics: An analytical thermodynamic theory. World Scientific.
18 Correia, L., 2006: Self-organization: a case for embodiment. In: Proceedings of The Evolution of Complexity Workshop at Artificial Life X: The 10th International Conference on the Simulation and Synthesis of Living Systems, 111-116.
19 Wiek, A., L. Withycombe, and C. L. Redman, 2011: Key competences in sustainability: a reference framework for academic program development. Sustainability Science 6, 203-218.   DOI
20 Willis, A. J., 1997: Forum. Functional Ecology 11(2), 268-271.   DOI
21 Ruth, M., 1996: Evolutionary economics at the crossroads of biology and physics. Journal of Social and Evolutionary Systems 19, 125-144.   DOI
22 Harte, J., 2002: Toward a synthesis of the Newtonian and Darwinian worldviews. Physics Today 29, 29-34.
23 Georgiev, G. Y., and A. Chatterjee, 2016: The road to a measurable quantitative understanding of self-organization and evolution. In: Gerard AJM Jagers op Akkerhuis (ed) Evolution and Transitions in Complexity. Springer, Switzerland. 223-232.
24 Gleick, J., 2011: The information: a history, a theory, a flood. Harper Collins Publishers.
25 Grothmann, T., M. Petzold, P. Ndaki, V. Kakembo, B. Siebenhuner, M. Kleyer, P. Yanda, and N. Ndou, 2017: Vulnerability assessment in african villages under conditions of land use and climate change: Case studies from Mkomazi and Keiskamma. Sustainability 9(6), 976pp.   DOI
26 Harte, J., 2011: Maximum entropy and ecology: a theory of abundance, distribution, and energetics. Oxford University Press, London.
27 Dodig-Crnkovic, G., 2012: Physical computation as dynamics of form that glues everything together. Information 3, 204-218.   DOI
28 Cote, M., and A. J. Nightingale, 2011: Resilience thinking meets social theory: situating social change in socio-ecological systems (SES) research. Progress in Human Geography, 1-15.
29 Deacon, T. W., 2011: Incomplete nature: how mind emerged from matter. W. W. Norton & Company, New York.
30 Dincer, I., and Y. A. Cengel, 2001: Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy 3, 116-149.   DOI
31 Folke, C., A. Jansson, J. Rockstrom, P. Olsson, S. Carpenter, F. Chapin, A. S. Crepin, G. Daily, K. Danell, J. Ebbesson, T. Elmqvist, V. Galaz, F. Moberg, M. Nilsson, H. Osterblom, E. Ostrom, A. Persson, G. Peterson, S. Polasky, W. Steffen, B. Walker, and F. Westley, 2011: Reconnecting to the biosphere. AMBIO: A Journal of the Human Environment 40(7), 719-738. DOI: 10.1007/s13280-011-0184-y.   DOI
32 Jorgensen, S. E., 2006: Eco-exergy as sustainability (Vol. 16). Wit Press.
33 Yun, J., S. Kim, M. Kang, C.-H. Cho, J.-H. Chun, and J. Kim, 2014b: Process networks of ecohydrological systems in a temperate deciduous forest: A complex systems perspective. Korean Journal of Agricultural and Forest Meteorology 16(3), 157-168.   DOI
34 Standish, R. K., 2001: On complexity and emergence. Complexity International 9, arXiv: nlin.AO/0101006.
35 Hammond, G. P., and A. B. Winnett, 2009: The influence of thermodynamic ideas on ecological economics: an interdisciplinary critique. Sustainability 1, 1195-1225.   DOI
36 Heylighen, F., 2011: Self-organization of complex, intelligent systems: an action ontology for transdisciplinary integration. Integral Review, 1-39.
37 Janhonen-Abruquah, H., J. Topp, and H. Posti-Ahokas, 2018: Educating professionals for sustainable futures. Sustainability 10(3), 592pp.
38 Kay, J. J., and M. Boyle, 2008: Self-organizing, holarchic, open systems (SOHOs). In: Waltner-Toews, D., J. J. Kay, and N. E. Lister (Eds) The ecosystem approach: Complexity, uncertainty, and managing for sustainability. Columbia University Press, New York, 52-78.
39 Kang, M., B. L. Ruddell, C. Cho, J. Chun, and J. Kim, 2017: Identifying $CO_2$ advection on a hill slope using information flow. Agricultural and Forest Meteorology 232, 265-278.   DOI
40 Jorgensen, S. E, and B. D. Fath, 2007: A new ecology: systems perspective.
41 Kim, J., and T. Oki, 2011: Visioneering: an essential framework in sustainability science. Sustainability Science 6, 247-251.   DOI
42 Kim, J., J. Yun, J. Hong, H. Kwon, and J. Chun, 2011: Ecohydrologic and biogeochemical process networks in forest ecosystems in monsoon East Asia. In: Lenaerts, T., M. Giacobini, H. Bersini, P. Bourgine, M. Dorigo, R. Doursat (Eds) Advances in artificial life -ECAL 2011. The MIT Press, 412-413.
43 Kleidon, A., 2012: How does the Earth system generate and maintain thermodynamic disequilibrium and what does it imply for the future of the planet?. Philosophical Transactions of the Royal Society A 370, 1012-1040.   DOI
44 Lee, J. Y., 2015: Micro-mission Micro-Enterprise. (in Korean) 도서출판 샘솟는 기쁨.
45 Kleidon, A., E. Zehe, U. Ehret, and U. Scherer, 2013: Thermodynamics, maximum power, and the dynamics of preferential river flow structures at the continental scale. Hydrology and Earth System Sciences 17, 225-251.
46 Kumar, P., and B. L. Ruddell, 2010: Information driven ecohydrologic self-organization. Entropy 12(10), 2085-2096.   DOI
47 Lang, D. J., A. Wiek, M. Bergmann, M. Stauffacher, P. Marlens, P. Moll, M. Swilling, and C. J. Thomas, 2012: Transdisciplinary research in sustainability science: practice, principles, and challenges. Sustainability Science 7, 25-43.   DOI
48 Logan, R. K., 2013: Ulanowicz's process ecology, duality and emergent deism. Open Journal of Philosophy 3, 422-428.
49 Meadows, D., 2008: Thinking in systems: a primer. Chelsea Green, Vermont.
50 Meadows, D., J. Randers, and D. Meadows, 2004: Limits to growth: the 30-year update. Chelsea Green, White River Junction.
51 Mitchell, M., 2009: Complexity: a guided tour. Oxford University Press, New York.
52 Mooney, H. A., A. Duraiappah, and A. Larigauderie, 2012: Evolution of natural and social science interactions in global change research programs. Proceedings of National Academy of Science, www.pnas.org/cgi/doi/10.1073/pnas.1107484110.   DOI
53 Nicholas, G. R., 1971: The entropy law and the economic process. Harvard University Press.
54 Prokopenko, M., F. Boschetti, and A. J. Ryan, 2009: An information-theoretical primer on complexity, self-organizatoin, and emergence. Complexity 15, 11-28, doi:10.1002/cplx.20249.   DOI
55 O'Brien, K., A. Patwardhan, M. Pelling, S. Hallegatte, A. Maskrey, T. Oki, U. Oswald-Spring, T. Wilbanks, P. Z. Yanda with contributing authors F. Berkhaut, R. Biggs, H.G. Brauch, K. Brown, C. Folke, L. Harrington, H. Kunreuther, C. Lacambra, R. Leichenko, R. Mechler, C. Pahl-Wostl, V. Przyluski, D. Satterthwaite, F. Sperling, L. Sygna, T. Tanner, P. Tschakert, K. Ulsrud, V. Viguie, 2012: Toward a sustainable and resilient future. In: Field, C. B., V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. J. Mach, G.-K. Plattner, S. K. Allen, M. Tignor, and P. M. Migley (Eds.) Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, 437-486.
56 Page, S. E., 2008: The difference: how the power of diversity creates better groups, firms, schools, and societies. Princeton University Press, New Jersey.
57 Prigogine, I., 1980: From being to becoming: time and complexity in the physical sciences. Freeman.
58 Rifkin, J., 2009: The empathic civilization: the race to global consciousness in a world in crisis. Tarcher/Penguin, New York.
59 Ruddell, B. L., and P. Kumar, 2009b: Ecohydrologic process networks: 2. Analysis and characterization. Water Resources Research 45, W03420. DOI:10.1029/2008WR007280.   DOI
60 Ruddell, B. L., and P. Kumar, 2009a: Ecohydrologic process networks: 1. Identification. Water Resources Research 45, W03419. DOI:10.1029/2008WR007279.   DOI
61 Ruddell, B. L., N. A. Brunsell, and P. C. Stoy, 2013: Applying information theory in the geosciences to quantify process uncertainty, feedback, scale. EOS 94, 56-57.   DOI