• Title/Summary/Keyword: Remote Robot

Search Result 421, Processing Time 0.027 seconds

Internal Teleoperation of an Autonomous Mobile Robot (인터넷을 이용한 자율운행로봇의 원격운용)

  • 박태현;강근택;이원창
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.45-45
    • /
    • 2000
  • This paper proposes a remote control system that combines computer network and an autonomous mobile robot. We control remotely an autonomous mobile robot with vision via the internet to guide it under unknown environments in the real time. The main feature of this system is that local operators need a World Wide Web browser and a computer connected to the internet communication network and so they can command the robot in a remote location through our Home Page. The hardware architecture of this system consists of an autonomous mobile robot, workstation, and local computers. The software architecture of this system includes the server part for communication between user and robot and the client part for the user interface and a robot control system. The server and client parts are developed using Java language which is suitable to internet application and supports multi-platform. Furthermore, this system offers an image compression method using motion JPEG concept which reduces large time delay that occurs in network during image transmission.

  • PDF

A development of remote controlled mobile robot working in a hazard environment (위해환경에서 구동가능한 원격제어 이동 로봇 개발)

  • 박제용;최현석;현웅근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.457-461
    • /
    • 2002
  • This paper describes a development of a robot working in hazard environment. The developed robot consists of robot controller with vision system and host PC program. The robot and camera can move with 2 degree of freedom by independent remote controlling a user friendly designed joystick. An environment is recognized by the vision system and ultra sonic sensors. The visual image and command data translated through 900MHz and 447MHz RF controller, respectively. To show the validity of the developed system, operations of the robot in the field area were illustrated.

  • PDF

Remote Controlled Robot System using Real-Time Operating System (실시간 운영체제를 탑재한 원격 제어 로봇 시스템)

  • Lee, Tae-Hee;Cho, Sang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.689-695
    • /
    • 2004
  • This paper presents a robot system that combines computer network and an autonomous mobile robot where RTOS is installed. We propose a wireless communication protocol, and also implement it on the RTOS of the robot system. Main controller of the robot processes the control program as a task type in the real-time operating system. Peripheral devices are driven by the device driver functions with the dependency of the hardware. Because the client and server program was implemented to support the multi-platforms by Java SDK and Java JMF, it is easy to analyze programs, maintain system, and correct the errors in the system. End-user can control a robot with a vision showing remote sight over the Internet in real time, and the robot is moved keeping away from the obstacles by itself and command of the server received from end-user at the local client.

Development of Network based Remote Surveillance System Using Omni-Directional Mobile Robot (전방향 이동로봇을 이용한 네트워크기반 원격 감시시스템 구현)

  • Seo, Yong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.91-97
    • /
    • 2010
  • This paper describes a development of an network based remote surveillance system using omni-directional mobile robot. the proposed surveillance system can control a mobile robot to move and examines the given place closely while the conventional surveillance system uses a fixed camera. The mobile robot in the proposed system has three omni-directional wheels to move to any given direction freely. We also developed the proposed system as robot services using Microsoft's MSRDS for a user to control the mobile robot and monitor the remote scene captured from the robot. Finally we verified the feasibility and effectiveness of the proposed system by conducting the remote operating the mobile robot and monitoring experiments in a networked environment. We also conducted a color based object detection and motion detection on image sequences acquired from a remote mobile robot in an another PC in a network environment.

The Implementation of Remote Control for a Quadruped Robot (사족 보행로봇의 원격제어 구현)

  • 공정식;이인구;이보희
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.300-308
    • /
    • 2002
  • This paper deals with the remote control of a quadruped robot by using network concept. In case we have to work out the designed plan under the irregular terrains and have the human friendly actions,. our robot will be required to have walking capability, and patterns with legs, which are designed like gaits of insert, dog and human. Our quadruped robot(called SERO) has not only the basic actions operated with sensors and actuators but also the various advanced walking trajectories, which are generated by Genetic Algorithm In addition, it has the remote controller in order to operate the remote actions such as generation of command via web browser and monitoring the robot status. In this paper the body and the controller structures are suggested and the results of kinematics analysis are also presented, All of the suggested motions of SERO are generated by PC simulation and implemented in real environment successfully.

Remote Monitoring System for a Building Cleaning Mobile Robot (빌딩청소용 이동로봇을 위한 원격 모니터링 시스템)

  • Yi, Soo-Yeong;Cho, Won-Ho;Choi, Byoung-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.1
    • /
    • pp.74-80
    • /
    • 2009
  • This paper presents a remote monitoring and simulation system for a building cleaning mobile robot. It provides a tool of convenient 3D graphical map construction including network camera image viewer and status information of the robot. The 3D map is reconstructed from existing 2D building CAD data with DXF format using OpenGL graphic API. Through this system, it is possible to monitor and control the cleaning mobile robot from remote place. A practical experiment is performed to show the reliability and convenience of the monitoring system. The proposed system is expected to give efficient way of control and monitoring to building cleaning mobile robot.

  • PDF

A Development of CDMA based Robot Remote Controller (CDMA 음성 통신 및 데이터 통신을 이용한 로봇 원격제어기 개발)

  • Kim, Woo-Sik;Yoon, Su-Jeong;Kim, Eung-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2762-2764
    • /
    • 2005
  • In this paper, we study the robot controller design using the voice and data communication via CDMA(Code Division Multiple Access) mobile communication network. We design the robot remote controller using the three methods, telephone call speech recognition, DTMF (Dual Tone Multiple Frequency) realization, SMS(Short Message Service) transmission/reception way via CDMA mobile communication network. We investigate the validity and effectiveness of the proposed remote controller which applied to the mobile robot.

  • PDF

Touch-based Moving Trajectory Generation and Data Acquisition of a Mobile Robot using a Smart Phone (스마트폰을 이용한 이동로봇의 터치기반 주행궤적 생성 및 데이터 획득)

  • Jung, Hyo-Young;Lee, Chung-Sub;Seo, Yong-Ho;Yang, Tae-Kyu
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.3
    • /
    • pp.98-102
    • /
    • 2011
  • This paper proposes a method of a touch-based remote control and sensor information acquisition of a mobile robot using a smart phone. An application in a smart phone processes the acquired sensor information and conducts autonomous navigation. By touching the screen of the smart phone, a series of points obtained from designated curve traces are analyzed and provide control of a robot. This study develops a mobile application that acquires and handles data from a mobile robot and sends appropriate action commands through remote control using Bluetooth communication with a smart phone. The utility and performance of the proposed control scheme have been successfully verified through experimental tasks using an actual smart phone and a mobile robot.

  • PDF

Force Feedback System of Telepresence Robot for Remote Operation (텔레프레전스 로봇의 원격 조작을 위한 포스 피드백 시스템)

  • Hwang, Jung-Uk;Park, Tae-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.586-591
    • /
    • 2015
  • This paper proposes a force feedback system of telepresence robot for remote operation. The ultrasonic sensors attached at the robot detect the obstacles, and generate the force to the operation joystick. In order to consider the network delay, we developed the fuzzy control system using ultrasonic data and robot speed. The method to calculate the force vector from the ultrasonic data is also presented to operate the robot more accurately. The simulation and experimental results are presented to verify the safe and accurate operation of the proposed system.

The Development of a Miniature Humanoid Robot System (소형 휴머노이드 로봇 시스템 개발)

  • Sung, Young-Whee;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.420-426
    • /
    • 2001
  • In this paper, we introduce a case study of developing a miniature humanoid robot that has 16 degrees of freedom and is able to perform statically stable walking. The developed humanoid robot is 37cm tall and weighs 1,200g. RC servo motors are used as actuators. The robot can walk forward and turn to any direction on an even surface. It equipped with a small digital camera, so it can transmit vision data to a remote host computer via wireless modem. The robot can be operated in two modes: One is a remote-controlled mode, in which the robot behaves according to the command given by a human operator through the user-interface program running on a remote host computer, the other is a stand-alone mode, in which the robot behaves autonomously according the pre-programmed strategy. The user-interface program also contains a robot graphic simulator that is used to produce and verify the robot\`s gait motion. In our walking algorithm, the ankle joint is mainly used for balancing the robot. The experimental results shows that the developed robot can perform statically stable walking on an even surface.

  • PDF