• Title/Summary/Keyword: Reluctance torque

Search Result 490, Processing Time 0.026 seconds

Characteristics of a 4-phase Segment Type Switched Reluctance Motor

  • Higuchi, Tsuyoshi;Yamaguchi, Daiki;Abe, Takashi;Yokoi, Yuichi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.235-240
    • /
    • 2014
  • A novel segment type switched reluctance motor (SRM) as a rare-earth-less motor is proposed. The torque was increased by 40% and the radial force was decreased by 76% compared with the same size usual variable reluctance (VR) type SRM. Increasing the average torque, however, caused increasing torque ripple. In this paper we develop a 4-phase segment type SRM and show that the torque ripple can be decreased well.

Study on the characteristics of IPMSM according to the ratio of magnetic and reluctance torque (마그네틱 토크와 릴럭턴스 토크 비율에 따른 IPMSM의 출력 특성에 관한 연구)

  • Kwon, Soon-O;Lee, Ji-Young;Fang, Liang;Zhang, Peng;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.853-854
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has higher power density than other PM(permanent Magnet) machines due to reluctance torque in addition to magnetic torque, and the ratio of magnetic and reluctance torque has influences on motor characteristics such as input current, efficiency, power factor, etc. Therefore, this paper presents the output characteristics of IPMSM according to the ratio magnetic and reluctance torque of IPMSM and discuss the design strategy of IPMSM.

  • PDF

A Study on 2 Phase Excitation Method of SRM Drive (SRM 드라이브의 2상여자방식에 관한 연구)

  • Moon, Jae-Won;An, Young-Ju;Ahn, Jin-Woo;Hwan, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.177-180
    • /
    • 1997
  • A new excitation method of switched reluctance moor drive is described in this paper. This motor produces reluctance torque by mutual action between tyro phases as well as conventional self reluctance torque. The change of self inductance and mutual inductance are used to produce torque. This paper suggests the operational principle, the mechanism of torque product and the driving characteristics of Switched Reluctance Motor with 2 phase excitation against conventional SRM experimentally. The energy conversion ratio is increased because the next phase is excited after one phase is already excited. Acoustic noise of SRM with 2 phase excitation is decreased than that of conventional SRM due to the mechanism of torque production.

  • PDF

Variable speed drive of a Switched Reluctance Motor by adjusting switching angles (Switched Reluctance Motor의 스위칭각 조정에 의한 가변속 구동특성)

  • Hwang, Jong-Kyu;Kong, Gwan-Sik;Hwang, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1026-1029
    • /
    • 1993
  • Inherent speed-torque performance of Switched Reluctance Motor is similar to that of series wound DC motor. Thus, the speed of the motor is extremely regulated according to load torque. For the purpose of controlling the speed and torque of SRM it is necessary to change the applied DC link voltage or the switch-ON and switch-OFF angles which control the phase current of the motor. This paper describes speed-torque characteristics of an integral horse power Switched Reluctance Motor by adjusting the switch-ON and switch-OFF angles. Speed at rated load torque can be regulated by adjusting the switching angles and the control scheme is applied to 2kW, 3 phase, 6/4 SRM.

  • PDF

Torque Control of a Switched Reluctance Motor for the Precision Position Control of a Tank Gun (전차 포신의 정밀 위치 제어를 위한 스위치드 리럭턴스 모터의 토크 제어)

  • 최창환;김용대;이대옥;박기환
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.42-52
    • /
    • 2000
  • A torque control method of a switched reluctance motor for the position control of a tank gun is presented. One of the widely used torque control scheme, torque sharing function method, is investigated and a new torque sharing function method is proposed that extends the definition region of the conventional TSF to both the positive and negative torque production regions. By using this definition, all kinds of the control inputs that consider switching on/off angle control as well as the current profiling can be described. A parametrized representation of the current profiles is proposed by using a series of B-spline functions, which reduces memory requirement and enables additional controllers. Optimal determination of the TSFs are also investigated for various control objectives. Moreover, the comparison study of each objective is presented. Since this method generalizes all of the possible control input, the current and torque profiles obtained from the optimization are the most suitable control input that satisfy the objectives.

  • PDF

Optimum Rotor Shaping for Torque Improvement of Double Stator Switched Reluctance Motor

  • Tavakkoli, Mohammadali;Moallem, Mehdi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1315-1323
    • /
    • 2014
  • Although the power density in Double Stator Switched Reluctance Motor (DSSRM) has been improved, the torque ripple is still very high. So, it is important to reduce the torque ripple for specific applications such as Electric Vehicles (EVs). In This paper, an effective rotor shaping optimization technique for torque ripple reduction of DSSRM is presented. This method leads to the lower torque pulsation without significant reduction in the average torque. The method is based on shape optimization of the rotor using Finite Element Method and Taguchi's optimization method for rotor reshaping for redistribution of the flux so that the phase inductance profile has smoother variation as the rotor poles move into alignment with excited stator poles. To check on new design robustness, mechanical analysis was used to evaluate structural conformity against local electromagnetic forces which cause vibration and deformation. The results show that this shape optimization technique has profound effect on the torque ripple reduction.

Torque Ripple Minimization for Switched Reluctance Motors Using a Fuzzy Logic and Sliding Mode Control (퍼지 이론과 슬라이딩모드 제어를 이용한 스위치드 릴럭턴스 전동기의 토크리플 저감)

  • Yoon, Jae-Seung;Kim, Dong-Hee;Shin, Hye-Ung;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1384-1392
    • /
    • 2014
  • This paper presents a torque ripple reduction algorithm for the switched reluctance motor drives using the fuzzy logic and the sliding mode control. A turn-on angle controller based on the fuzzy logic determines the optimal turn-on angle. In addition, a sliding mode torque control (SMTC) methods reduces torque ripples instantaneously in the commutation region. The proposed algorithm does not require complex system models considering nonlinear magnetizing or demagnetizing periods of the phase current. According to the rotor speed and torque, the proposed controller changes the turn-on angle and reference torque instantaneously until the torque ripples are minimized. The simulation and experimental results verify the validity of minimizing the torque ripple performance.

Torque Estimation of Switched Reluctance Motor using Energy Conversion Method (에너지 변환법에 의한 스위치드 릴럭턴스 모터의 토오크 추정)

  • Kim, Youn-Hyun;Kim, Sol;Choi, Jae-Hak;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.8
    • /
    • pp.374-383
    • /
    • 2001
  • This paper presents the torque estimation scheme by Energy Conversion Method (ECM) that can be applied to the torque control of switched reluctance motor. There are two types of torque estimation method by ECM. One is the method using mechanical output energy and another is that using co-energy. When the torque is estimated by ECM, the estimated flux linkage can be obtained by voltage equation and Luenberger observer. By comparing the torque estimated by ECM with that be FEM, we verify the feasibility of the proposed torque estimation by ECM.

  • PDF

Study of Permanent Magnet Optimum Design on the Permanent Magnet assisted-Synchronous Reluctance Motor

  • Lee, Hyung-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.11
    • /
    • pp.28-33
    • /
    • 2009
  • Average torque of PMa-SynRM(Permanent Magnet-assisted Synchronous Reluctance Motor) is changed by magnet form inserted to the barrier. Because the magnet structure inserted to the barrier influences to the magnet-torque and reluctance torque. Therefore, this paper present a suitable permanent magnet form design for maximum torque when the magnet quantites are always fixed. And each motor characteristic such as average torque, torque ripple, cogging torque and back-EMF are analyzed by FEM(Finite Element Method) for optimal design.

Minimization of Torque-Ripple in Switched Reluctance Motors Over Wide Speed Range

  • Dowlatshahi, Milad;Saghaiannejad, Seyed Morteza;Ahn, Jin-Woo;Moallem, Mehdi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.478-488
    • /
    • 2014
  • Torque pulsation mechanism and highly nonlinear magnetic characterization of switched reluctance motors(SRM) lead to unfavorable torque ripple and limit the variety of applications in industry. In this paper, a modification method proposed for torque ripple minimization of SRM based on conventional torque sharing functions(TSF) to improve maximum speed of torque ripple-free operation considering converter limitations. Due to increasing phase inductance in outgoing phase during the commutation region, reference current tracking can be deteriorated especially when the speed increased. Moreover, phase torque production in incoming phase may not be reached to the reference value near the turn-on angle in which the incremental inductance would be dramatically decreased. Torque error for outgoing phase can cause increasing the resultant motor torque while it would be negative for incoming phase and yields reducing the motor torque. In this paper, a modification method is proposed in which phase torque tracking error for each phase under the commutation added to the other phase so that the resultant torque remained in constant level. This yields to extend constant torque region and reduce peak phase current when the speed increased. Simulation and experimental results for four phase 4 KW, 8/6 SRM validate the effectiveness of the proposed scheme.