• Title/Summary/Keyword: Reliability-based analysis

Search Result 4,348, Processing Time 0.028 seconds

Reliability-Based Optimization of Continuous Steel Box Girder Bridges (신뢰성에 기초한 강상형 연속교의 단면 최적설계)

  • 조효남;이두화;정지승;민대홍
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.145-154
    • /
    • 1997
  • The results of optimum design by the deterministic approach adopted in the current design codes depend upon the safety levels of the applied code. But, it is now generally recognized that structural problems are nondeterministic and, consequently, that engineering optimum design must cope with uncertainties. Therefore, it is not an overstatement to affirm that the combination of reliability-based design procedures and optimization techniques is the only means of providing a powerful tool to obtain a practical optimum design solution. In the paper, reliability based optimum design procedure as a rational approach to optimum structural design is presented. The design constraints are formulated based on the ASD, LRFD and reliability theories. The reliability analysis is based on an advanced first-order second moment approach. Uncertainties in the structural strength and loading due to inherent variability as well as modeling and prediction errors are included in failure due to combined bending and shear. For the realistic reliability-based optimization of continuous steel box girder bridges, interactive non-linear limit state model is formulated based on the von Mises's combined stress yield criterion. Comparative results are presented when the ASD criteria are used for the optimum design of a structure under reliability constraints. In addition, this study comparatively shows the results of the optimum design for various criteria of design codes.

  • PDF

A SOFTWARE RELIABILITY ESTIMATION METHOD TO NUCLEAR SAFETY SOFTWARE

  • Park, Gee-Yong;Jang, Seung Cheol
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.55-62
    • /
    • 2014
  • A method for estimating software reliability for nuclear safety software is proposed in this paper. This method is based on the software reliability growth model (SRGM), where the behavior of software failure is assumed to follow a non-homogeneous Poisson process. Two types of modeling schemes based on a particular underlying method are proposed in order to more precisely estimate and predict the number of software defects based on very rare software failure data. The Bayesian statistical inference is employed to estimate the model parameters by incorporating software test cases as a covariate into the model. It was identified that these models are capable of reasonably estimating the remaining number of software defects which directly affects the reactor trip functions. The software reliability might be estimated from these modeling equations, and one approach of obtaining software reliability value is proposed in this paper.

An Efficient Approach on Reliability Analysis under Multidisciplinary Analysis Systems (다분야 통합해석 시스템의 효율적인 신뢰성 해석기법 연구)

  • Ahn, Joong-Ki;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.18-25
    • /
    • 2005
  • Existing methods have performed the reliability analysis using nonlinear optimization techniques. This is mainly due to the fact that they directly apply Multidisciplinary Design Optimization(MDO) frameworks to the reliability analysis formulation. Accordingly, the reliability analysis and the Multidisciplinary Analysis(MDA) are tightly coupled in a single optimizer, which hampers utilizing the recursive and function-approximation based reliability analysis methods such as the Advanced First Order Reliability Method(AFORM). In order to utilize the efficient reliability analysis method under multidisciplinary analysis systems, we propose a new strategy named Sequential Approach on Reliability Analysis under Multidisciplinary analysis systems(SARAM). In this approach, the reliability analysis and the MDA are decomposed and arranged in a sequential manner, making a recursive loop. The efficiency of the SARAM method was verified using three illustrative examples taken from the literatures. Compared with existing methods, it showed the least number of subsystem analyses over other methods while maintaining accuracy.

Comparative Reliability Analysis of DC-link Capacitor of 3-Level NPC Inverter Considering Mission-Profiles of PV Systems (태양광 시스템의 미션 프로파일 고려한 3-레벨 NPC 인버터의 DC-link 커패시터 신뢰성 비교 분석)

  • Jae-Heon, Choi;Ui-Min, Choi
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.535-540
    • /
    • 2022
  • DC-link capacitors are reliability-critical components in a photovoltaic (PV) inverter. Typically, the lifetime of a DC-link capacitor is evaluated by considering the voltage and hot-spot temperature of the capacitor under the specific operating condition of the PV inverter. However, the output of the PV inverter is determined by solar irradiation and ambient temperature, which vary with the seasons; accordingly, the hot-spot temperature of the capacitor also changes. Therefore, the mission profile of the PV system should be considered to effectively evaluate the reliability of the DC-link capacitor. In this study, the reliability of the DC-link capacitor of a three-level NPC inverter is comparatively analyzed with and without considering the mission profiles of the PV system, where two mission profiles recorded in Arizona and Iza are considered. The accumulated damage of the DC-link capacitor is calculated based on the lifetime model by analyzing its thermal loading. Afterward, a reliability evaluation of the DC-link capacitor is performed at the component level and then at the system level by considering all capacitors by means of Monte Carlo analysis. Results reveal the importance of performing a mission-profile-based reliability evaluation during the design of high-reliability PV inverters to achieve the target reliability performance.

On a Study of Reliability-Based MTTF Derivation and Parts Requirement Prediction for Securing Safety of Robot-Based Cargo Loading System (화물 상차 로봇 시스템의 안전성 확보를 위한 신뢰성 기반 MTTF 도출 및 부품소요량 예측 연구)

  • Myung-Sung Kim;Young-Min Kim
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.1
    • /
    • pp.15-21
    • /
    • 2023
  • In modern society, the delivery service market has grown explosively due to rapid changes in social structure and the recent COVID-19 pandemic. Therefore, various problems such as injury to workers and an increase in human accidents are occurring due to the loading and unloading of parcels. In order to solve this problem, domestic company n is developing a "robot-based cargo loading and unloading system". In developing a new technology system, quantitative reliability targets should be set for efficient operation and development. In this paper, reliability analysis was conducted through field data for the pneumatic gripper of the "robot-based cargo loading system". The reliability of the failure data was analyzed to estimate the distribution parameters and MTTF. Random data was derived for the probability of occurrence of a failure with the estimated value. By repeating the simulation to predict the number and year of failures according to the estimated parameters of the probability distribution, it was proposed as a method that reflects realistic probabilities rather than calculating with simple arithmetic using the average MTTF previously used in the field.

Reliability analysis of tested steel I-beams with web openings

  • Bayramoglu, Guliz
    • Structural Engineering and Mechanics
    • /
    • v.41 no.5
    • /
    • pp.575-589
    • /
    • 2012
  • This paper presents a reliability analysis of steel I-beams with rectangular web openings, based on a combination of the common probabilistic reliability methods, such as RSM, FORM and SORM and using data obtained from experimental tests performed at the Istanbul Technical University. A procedure is proposed to obtain the optimum design load that can be applied to this type of structural members, by taking into account specified target values of reliability indices for ultimate and serviceability limit states. The goal of the paper is to present an algorithm to obtain more realistic and economical design of beams and to demonstrate that it can be applied efficiently to steel I-beams with web openings. Finally, a sensitivity analysis is performed allowing to ranking the random variables according to their importance in the reliability analysis.

Reliability computation technique for ball bearing under the stress-strength model

  • Nayak, S.;Seal, B.
    • International Journal of Reliability and Applications
    • /
    • v.17 no.1
    • /
    • pp.51-63
    • /
    • 2016
  • Stress function of ball bearing is function of multiple stochastic factors and this system is so complex that analytical expression for reliability is difficult to obtain. To address this pressing problem, in this article, we have made an attempt to approximate system reliability of this important item based on reliability bounds under the stress strength setup. This article also provides level of error of this item. Numerical analysis has been adopted to show the closeness between the upper and lower bounds of this item.

Deterministic and reliability-based design of necessary support pressures for tunnel faces

  • Li, Bin;Yao, Kai;Li, Hong
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.35-48
    • /
    • 2020
  • This paper provides methods for the deterministic and reliability-based design of the support pressures necessary to prevent tunnel face collapse. The deterministic method is developed by extending the use of the unique load multiplier, which is embedded within OptumG2/G3 with the intention of determining the maximum load that can be supported by a system. Both two-dimensional and three-dimensional examples are presented to illustrate the applications. The obtained solutions are validated according to those derived from the existing methods. The reliability-based method is developed by incorporating the Response Surface Method and the advanced first-order second-moment reliability method into the bisection algorithm, which continuously updates the support pressure within previously determined brackets until the difference between the computed reliability index and the user-defined value is less than a specified tolerance. Two-dimensional reliability-based support pressure is compared and validated via Monte Carlo simulations, whereas the three-dimensional solution is compared with the relationship between the support pressure and the resulting reliability index provided in the existing literature. Finally, a parametric study is carried out to investigate the influences of factors on the required support pressure.

Reliability Analysis of Reinforced Concrete Shear Wall Subjected to Biaxial Bending (이축 휨 모멘트를 받는 철근콘크리트 전단벽의 신뢰성 해석)

  • Park Jae Young;Shin Yeong-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.433-436
    • /
    • 2004
  • The safety of buildings is generally estimated by analyzing a plane frame ignoring a minor bending moment. In this paper, uncertainties of reinforced concrete shear wall subjected to a biaxial bending are considered. First, major parameters are selected from all parameters of general shear wall design to perform a reliability analysis in their practical ranges, means and standard derivations of selected design parameters for the reliability analysis are calculated by a data mining as a simulation method. The bi-section method is used to find inclined neutral axis and its limit state using MATLAB subjected to the concept on strength design method. The reliability index $\beta$ as a safety index is calculated based on AFOSM(Advanced First-Order Second Moment) method. Also, if target reliability index $\beta_T$ is decided by an engineer an amount of reinforcement can be calculated by subtracting the reliability index $\beta$ from the target reliability index $\beta_T$.

  • PDF

Development of the SIS Evaluation Method Based on Reliability Analysis (신뢰도 분석에 근거한 SIS 평가 방법론 개발)

  • Kim In-Won;Jin Sang-Hwa;Song Kwang Ho;Yeo Yeong-Koo
    • Journal of the Korean Institute of Gas
    • /
    • v.6 no.1 s.17
    • /
    • pp.66-73
    • /
    • 2002
  • In this study a new SIS evaluation method based on the reliability analysis has been developed. It evaluates the Safety Integrity Level (SIL) using the Fault Tree Analysis (FTA), and when the SIL falls short of the systems target level, through the reliability analysis and system retrofit, this method will satisfy the aimed SIL. A hazard evaluation was carried out on the 415V Diesel BUS to verify the SIL evaluation method based on the reliability analysis. The availability of the original 415V Diesel BUS was $99.40\%$, which comes under the category of SIL 2. After exchanging the diesel generator and the isolator switch using the developed evaluation method, the availability rose to $99.94\%$, SIL 3. By applying the method presented in this study, not only will it reduce the maintenance cost due to the prevention of accidents and reduction of loss, but also maximize the reliability of the system.

  • PDF