• Title/Summary/Keyword: Reliability of artificial intelligence

Search Result 179, Processing Time 0.024 seconds

Design and Implementation of a Mobile-based Sarcopenia Prediction and Monitoring System (모바일 기반의 '근감소증' 예측 및 모니터링 시스템 설계 및 구현)

  • Kang, Hyeonmin;Park, Chaieun;Ju, Minina;Seo, Seokkyo;Jeon, Justin Y.;Kim, Jinwoo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.3
    • /
    • pp.510-518
    • /
    • 2022
  • This paper confirmed the technical reliability of mobile-based sarcopenia prediction and monitoring system. In implementing the developed system, we designed using only sensors built into a smartphone without a separate external device. The prediction system predicts the possibility of sarcopenia without visiting a hospital by performing the SARC-F survey, the 5-time chair stand test, and the rapid tapping test. The Monitoring system tracks and analyzes the average walking speed in daily life to quickly detect the risk of sarcopenia. Through this, it is possible to rapid detection of undiagnosed risk of undiagnosed sarcopenia and initiate appropriate medical treatment. Through prediction and monitoring system, the user may predict and manage sarcopenia, and the developed system can have a positive effect on reducing medical demand and reducing medical costs. In addition, collected data is useful for the patient-doctor communication. Furthermore, the collected data can be used for learning data of artificial intelligence, contributing to medical artificial intelligence and e-health industry.

A Case Study of Rapid AI Service Deployment - Iris Classification System

  • Yonghee LEE
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.4
    • /
    • pp.29-34
    • /
    • 2023
  • The flow from developing a machine learning model to deploying it in a production environment suffers challenges. Efficient and reliable deployment is critical for realizing the true value of machine learning models. Bridging this gap between development and publication has become a pivotal concern in the machine learning community. FastAPI, a modern and fast web framework for building APIs with Python, has gained substantial popularity for its speed, ease of use, and asynchronous capabilities. This paper focused on leveraging FastAPI for deploying machine learning models, addressing the potentials associated with integration, scalability, and performance in a production setting. In this work, we explored the seamless integration of machine learning models into FastAPI applications, enabling real-time predictions and showing a possibility of scaling up for a more diverse range of use cases. We discussed the intricacies of integrating popular machine learning frameworks with FastAPI, ensuring smooth interactions between data processing, model inference, and API responses. This study focused on elucidating the integration of machine learning models into production environments using FastAPI, exploring its capabilities, features, and best practices. We delved into the potential of FastAPI in providing a robust and efficient solution for deploying machine learning systems, handling real-time predictions, managing input/output data, and ensuring optimal performance and reliability.

Life Cycle Cost Analysis Models for Bridge Structures using Artificial Intelligence Technologies (인공지능기술을 이용한 교량구조물의 생애주기비용분석 모델)

  • Ahn, Young-Ki;Im, Jung-Soon;Lee, Cheung-Bin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.189-199
    • /
    • 2002
  • This study is intended to propose a systematic procedure for the development of the conditional assessment based on the safety of structures and the cost effective performance criteria for designing and upgrading of bridge structures. As a result, a set of cost function models for a life cycle cost analysis of bridge structures is proposed and thus the expected total life cycle costs (ETLCC) including initial (design, testing and construction) costs and direct/indirect damage costs considering repair and replacement costs, human losses and property damage costs, road user costs, and indirect regional economic losses costs. Also, the optimum safety indices are presented based on the expected total cost minimization function using only three parameters of the failure cost to the initial cost (${\tau}$), the extent of increased initial cost by improvement of safety (${\nu}$) and the order of an initial cost function (n). Through the enough numerical invetigations, we can positively conclude that the proposed optimum design procedure for bridge structures based on the ETLCC will lead to more rational, economical and safer design.

Investigating Factors that affect Attitude on Electric Vehicles for Global Climate Change and Environmental Policy

  • Hyeongdae MUN;Yooncheong CHO
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.3
    • /
    • pp.7-15
    • /
    • 2023
  • Purpose: The purpose of this study is to investigate how consumers perceive electric vehicles and factors that affect attitude, satisfaction, and intention to use electric vehicles and to explore policy issues regarding climate change and global environment. By classifying actual and potential users, this study developed the following research questions: i) factors including economic feasibility, sociality, environmental sustainability, inefficiency, inconvenience, convenience, and uncertainty affect attitude to electric vehicles; ii) attitude to electric vehicles affects actual consumers' satisfaction; and iii) attitude to electric vehicles affects potential users' intention to use. Research design, data and methodology: This study conducted an online survey and applied factor and regression analyses and ANOVA to test hypotheses. Results: The results of this study found that economic feasibility and convenience factors significantly affect attitude in both cases of actual and potential users. How actual users perceive efficiency of electric vehicles negatively and uncertain issues such as battery technology affect attitude to electric vehicles. Conclusions: This study provides policy implications that foster promotional policies for the adoption of electric vehicles for environment and regulate negative aspects. This study also provides managerial implications for manufacturers to develop better technology competences to enhance reliability on electric vehicles.

Preservice Teachers' Beliefs about Integrating Artificial Intelligence in Mathematics Education: A Scale Development Study

  • Sunghwan Hwang
    • Research in Mathematical Education
    • /
    • v.26 no.4
    • /
    • pp.333-349
    • /
    • 2023
  • Recently, AI has become a crucial tool in mathematics education due to advances in machine learning and deep learning. Considering the importance of AI, examining teachers' beliefs about AI in mathematics education (AIME) is crucial, as these beliefs affect their instruction and student learning experiences. The present study developed a scale to measure preservice teachers' (PST) beliefs about AIME through factor analysis and rigorous reliability and validity analyses. The study analyzed 202 PST's data and developed a scale comprising three factors and 11 items. The first factor gauges PSTs' beliefs regarding their roles in using AI for mathematics education (4 items), the second factor assesses PSTs' beliefs about using AI for mathematics teaching (3 items), and the third factor explores PSTs' beliefs about AI for mathematics learning (4 items). Moreover, the outcomes of confirmatory factor analysis affirm that the three-factor model outperforms other models (a one-factor or a two-factor model). These findings are in line with previous scales examining mathematics teacher beliefs, reinforcing the notion that such beliefs are multifaceted and developed through diverse experiences. Descriptive analysis reveals that overall PSTs exhibit positive beliefs about AIME. However, they show relatively lower levels of beliefs about their roles in using AI for mathematics education. Practical and theoretical implications are discussed.

Analysis of Domestic Research Trends on Artificial Intelligence-Based Prognostics and Health Management (인공지능 기반 건전성 예측 및 관리에 관한 국내 연구 동향 분석)

  • Ye-Eun Jeong;Yong Soo Kim
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.2
    • /
    • pp.223-245
    • /
    • 2023
  • Purpose: This study aim to identify the trends in AI-based PHM technology that can enhance reliability and minimize costs. Furthermore, this research provides valuable guidelines for future studies in various industries Methods: In this study, I collected and selected AI-based PHM studies, established classification criteria, and analyzed research trends based on classified fields and techniques. Results: Analysis of 125 domestic studies revealed a greater emphasis on machinery in both diagnosis and prognosis, with more papers dedicated to diagnosis. various algorithms were employed, including CNN for image diagnosis and frequency analysis for signal data. LSTM was commonly used in prognosis for predicting failures and remaining life. Different industries, data types, and objectives required diverse AI techniques, with GAN used for data augmentation and GA for feature extraction. Conclusion: As studies on AI-based PHM continue to grow, selecting appropriate algorithms for data types and analysis purposes is essential. Thus, analyzing research trends in AI-based PHM is crucial for its rapid development.

Age differences of preference for humanoid AI speakers (얼굴형 인공지능 스피커에 대한 선호의 나이 효과)

  • Oh, Songjoo;Hwang, Jihyun;Yew, Jiho;Hahn, Sowon
    • Korean Journal of Cognitive Science
    • /
    • v.29 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • In this study, we investigated age differences of preference and trust ratings when the appearance of an artificial intelligent speaker resembles a human face. The appearance of the artificial intelligent speaker was presented in seven levels from robot face to human face. In addition, face stimuli were divided into gender (male and female) and age (20s / 60s). Participants evaluated the reliability and likability of each face stimulus on a 7-point scale. The results show that younger adults tend to prefer the face that was halfway between the robot and the human face, while older adults evaluated that the perceived reliability and likability were higher when the stimuli resembled the human face. When asked to choose the most preferred of the four face categories, all participants chose a younger face. However, with additional conditions including emoticon face and empty condition, older adults still preferred human face, while younger adults preferred emoticon face and empty condition. Taken together, older adults are more receptive to human faces than robotic faces in the context of artificial intelligence speakers. Because artificial intelligent speakers can play an important role in the elderly living alone, the present study will be a good reference in the design and development of artificial intelligent speakers for the elderly users.

Robust Person Identification Using Optimal Reliability in Audio-Visual Information Fusion

  • Tariquzzaman, Md.;Kim, Jin-Young;Na, Seung-You;Choi, Seung-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3E
    • /
    • pp.109-117
    • /
    • 2009
  • Identity recognition in real environment with a reliable mode is a key issue in human computer interaction (HCI). In this paper, we present a robust person identification system considering score-based optimal reliability measure of audio-visual modalities. We propose an extension of the modified reliability function by introducing optimizing parameters for both of audio and visual modalities. For degradation of visual signals, we have applied JPEG compression to test images. In addition, for creating mismatch in between enrollment and test session, acoustic Babble noises and artificial illumination have been added to test audio and visual signals, respectively. Local PCA has been used on both modalities to reduce the dimension of feature vector. We have applied a swarm intelligence algorithm, i.e., particle swarm optimization for optimizing the modified convection function's optimizing parameters. The overall person identification experiments are performed using VidTimit DB. Experimental results show that our proposed optimal reliability measures have effectively enhanced the identification accuracy of 7.73% and 8.18% at different illumination direction to visual signal and consequent Babble noises to audio signal, respectively, in comparison with the best classifier system in the fusion system and maintained the modality reliability statistics in terms of its performance; it thus verified the consistency of the proposed extension.

Autonomous Factory: Future Shape Realized by Manufacturing + AI (제조+AI로 실현되는 미래상: 자율공장)

  • Son, J.Y.;Kim, H.;Lee, E.S.;Park, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.1
    • /
    • pp.64-70
    • /
    • 2021
  • The future society will be changed through an artificial intelligence (AI) based intelligent revolution. To prepare for the future and strengthen industrial competitiveness, countries around the world are implementing various policies and strategies to utilize AI in the manufacturing industry, which is the basis of the national economy. Manufacturing AI technology should ensure accuracy and reliability in industry and should be explainable, unlike general-purpose AI that targets human intelligence. This paper presents the future shape of the "autonomous factory" through the convergence of manufacturing and AI. In addition, it examines technological issues and research status to realize the autonomous factory during the stages of recognition, planning, execution, and control of manufacturing work.