• Title/Summary/Keyword: Reliability Path

Search Result 632, Processing Time 0.028 seconds

Reliability Evaluation on Multi-State Flow Network

  • Lee, Seung-Min;Lee, Chong-Hyung;Park, Dong-Ho
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.119-124
    • /
    • 2002
  • We consider a multi-state flow network consisted of undirected links and focus on how to find efficiently the union of minimal paths transmitting a required flow when minimal paths are known.

  • PDF

Mathematical Modeling for Traffic Flow (교통흐름의 수학적 모형)

  • Lee, Seong-Cheol
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.1
    • /
    • pp.127-131
    • /
    • 2011
  • Even if there are no causing factors such as car crash and road works, traffic congestion come from traffic growth on the road. In this case, estimation of traffic flow helps find the solution of traffic congestion problem. In this paper, we present a optimization model which used on traffic equilibrium problem and studied the problem of inverting shortest path sets for complex traffic system. And we also develop pivotal decomposition algorithm for reliability function of complex traffic system. Several examples are illustrated.

Reliability Analysis of Multistate Systems with Multistate Components (다항상태 부품으로 구성된 다항상태 시스템의 신뢰도 분석에 관한 연구)

  • Lee, Chong-Hyung
    • Journal of Korean Society for Quality Management
    • /
    • v.35 no.2
    • /
    • pp.99-105
    • /
    • 2007
  • Most of systems used in real fields are considered as multistate systems with multistate components. As one of methods for performance evaluation of the system, reliability analysis has been popularly used. In this paper, we propose an improved reliability analysis method which is based on state space decomposition method of Aven (1985). In deriving upper bounds, our method uses sets of unspecified states whereas Aven (1985) excludes sets of unacceptance states. Also, closer lower bounds to an exact reliability are obtained by considering of importance of min-path vectors.

Lightweight and Migration Optimization Algorithms for Reliability Assurance of Migration of the Mobile Agent

  • Lee, Yon-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.5
    • /
    • pp.91-98
    • /
    • 2020
  • The mobile agent, which handles a given task while migrating between the sensor nodes, moves including the execution commands and task processing results. This increases the size of the mobile agent, causing the network to load, leading to the migration time delay and the loss of migration reliability. This paper presents the method of lightening the mobile agent using distributed object technology and the algorithm for exploring and providing the optimal migration path that is actively performed in the event of network traffic, and it proposes a method to ensure the reliability of the mobile agent migration by applying them. In addition, through the comparative analysis experiments based on agent size and network traffic for the migration time of mobile agent equipped with active rules in sensor network-based mobile agent middleware environment, applying the proposed methods proves to ensure the autonomy and migration reliability of the mobile agent.

Efficiency of the nickel-titanium rotary instruments for glide path preparation: in-vitro preliminary study (Glide path 형성용 니켈티타늄 회전 파일의 효율: in-vitro 예비 연구)

  • Kim, Hyeon-Cheol;Kwak, Sang Won;Ha, Jung-Hong
    • The Journal of the Korean dental association
    • /
    • v.55 no.10
    • /
    • pp.688-694
    • /
    • 2017
  • Objectives: This preliminary study compared the effects of glide path establishing instruments prior to substantial root canal preparation. Materials and Methods: Glide path was established by enlargement of the 2nd mesiobuccal root canal of Dentalike by using three kinds of glide path preparation nickel-titanium file; PathFile, One G and ProGlider. The pre- and post-instrumented Dentalikes were weighed in the resolution of 1 / 10mg. In addition, after glide path preparation, torque generated during shaping using the WavoOne file was measured. The data were analyzed by one-way ANOVA and Tukey post-hoc test at a significance level of 95%. Results: The ProGlider had the significantly larger amount of reduced weight than other instrument groups (p < 0.05). There was no significant difference between group of glide path preparation with ProGlider and without glide path preparation in maximum torque and total stress generation during the shaping with WaveOne. Conclusions: Glide path preparation instruments may have different efficiency according to their geometries. The Dentalike artificial teeth were revealed to have discrepancies in the size of root canals by microCT examination. It is impossible to make a meaningful judgment of the results due to the reliability or resolution problem of the root canal size of the artificial tooth selected as the standardized tooth.

  • PDF

Dynamic Single Path Routing Mechanism for Reliability and Energy-Efficiency in a Multi Hop Sensor Network (다중 홉 센서 네트워크에서 신뢰성과 에너지 효율성을 고려한 동적 단일경로 설정기법)

  • Choi, Seong-Yong;Kim, Jin-Su;Jung, Kyung-Yong;Han, Seung-Jin;Choi, Jun-Hyeog;Rim, Kee-Wook;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.9
    • /
    • pp.31-40
    • /
    • 2009
  • What are important in wireless sensor networks are reliable data transmission, energy efficiency of each node, and the maximization of network life through the distribution of load among the nodes. The present study proposed DSPR, a dynamic unique path routing machanism that considered these requirements in wireless sensor networks. In DSPR, data is transmitted through a dynamic unique path, which has the least cost calculated with the number of hops from each node to the sink, and the average remaining energy. At that time, each node monitors its transmission process and if a node detects route damage it changes the route dynamically, referring to the cost table, and by doing so, it enhances the reliability of the network and distributes energy consumption evenly among the nodes. In addition, when the network topology is changed, only the part related to the change is restructured dynamically instead of restructuring the entire network, and the life of the network is extended by inhibiting unnecessary energy consumption in each node as much as possible. In the results of our experiment, the proposed DSPR increased network life by minimizing energy consumption of the nodes and improved the reliability and energy efficiency of the network.

The Reliability and Validity of Smart Insole for Balance and Gait Analysis (균형과 보행분석을 위한 스마트 인솔의 신뢰도와 타당도 분석)

  • Lee, Byoung-Kwon;Han, Dong-Wook;Kim, Chang-Young;Kim, Gi-Young;Park, Dae-Sung
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.4
    • /
    • pp.291-298
    • /
    • 2021
  • Purpose: The Pedisole is a newly developed shoe-mounted wearable assessment system for analyzing balance and gait. This study aimed to determine the reliability and validity of the parameters provided by the system for static balance and gait analysis of healthy adults. Methods: This study included 38 healthy adults (22.4±1.9 years) with no history of injury in the lower limbs. All participants were asked to perform balance and gait tasks for undertaking measurements. For analysis of balance, both the smart Pedisole and Pedoscan systems were concurrently used to analyze the path length of the center of pressure (COP) and the weight ratio of the left and right for 10 s. Gait was measured using the smart Pedisole and GaitRite walkway systems simultaneously. The participants walked at a self-selected preferred gait speed. The cadence, stance time, swing time, and step time were used to analyze gait characteristics. Using the paired t-test, the intra-class coefficient correlation (ICC) was calculated for reliability. The Spearman correlation was used to assess the validity of the measurements. In total, data for balance from 36 participants and the gait profiles of 37 participants were evaluated. Results: There were significant differences between the COP path lengths (p<.050) derived from the two systems, and a significant correlation was found for COP path length (r=.382~.523) for static balance. The ICC for COP path length and weight ratio was found to be greater than .687, indicating moderate agreement in balance parameters. The ICC of gait parameters was found to be greater than .697 except for stance time, and there was significant correlation (r=.678~.922) with the GaitRite system. Conclusion: The newly developed smart insole-type Pedisole system and the related application are useful, reliable, and valid tools for balance and gait analysis compared to the gold standard Pedoscan and the GaitRite systems in healthy individuals.

Component-Based System Reliability using MCMC Simulation

  • ChauPattnaik, Sampa;Ray, Mitrabinda;Nayak, Mitalimadhusmita;Patnaik, Srikanta
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.2
    • /
    • pp.79-89
    • /
    • 2022
  • To compute the mean and variance of component-based reliability software, we focused on path-based reliability analysis. System reliability depends on the transition probabilities of components within a system and reliability of the individual components as basic input parameters. The uncertainty in these parameters is estimated from the test data of the corresponding components and arises from the software architecture, failure behaviors, software growth models etc. Typically, researchers perform Monte Carlo simulations to study uncertainty. Thus, we considered a Markov chain Monte Carlo (MCMC) simulation to calculate uncertainty, as it generates random samples through sequential methods. The MCMC approach determines the input parameters from the probability distribution, and then calculates the average approximate expectations for a reliability estimation. The comparison of different techniques for uncertainty analysis helps in selecting the most suitable technique based on data requirements and reliability measures related to the number of components.

A New Certificate Path Processing Scheme employed the Trusted CA for improving an efficiency on the Computational Aspect (연산적 측면의 효율성을 향상시키는 신뢰 CA를 이용한 새로운 인증 경로 처리 기법)

  • 최연희;전문석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9C
    • /
    • pp.908-922
    • /
    • 2003
  • The Public Key Infrastructure (PKI) trends to delegate the certificate path processing to the Delegated Path Discovery (DPD) Server and Delegated Path Validation (DPV) server recently. The most critical factor for the selection of the delegated server is to allow the server to be equipped with a high reliability through a low cost, and simple implementation. In this paper, we propose a new certificate path processing scheme employed the trusted CA as the DPD/DPV server by adding the capability of the Validation Authority (VA) to the trusted CA. Since our proposed scheme uses the existing trusted CA as validation server, we can achieve a high trust through a simple implementation for the processing. Besides, we propose an additional scheme for reducing an overhead on the trusted CA. it is obtained by delegating digital signature verification to CAs on the path and by skipping the repeated path processing. As the result, our proposed validation scheme can be performed efficiently with high speed and low computational overhead.

Path selection algorithm for multi-path system based on deep Q learning (Deep Q 학습 기반의 다중경로 시스템 경로 선택 알고리즘)

  • Chung, Byung Chang;Park, Heasook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.50-55
    • /
    • 2021
  • Multi-path system is a system in which utilizes various networks simultaneously. It is expected that multi-path system can enhance communication speed, reliability, security of network. In this paper, we focus on path selection in multi-path system. To select optimal path, we propose deep reinforcement learning algorithm which is rewarded by the round-trip-time (RTT) of each networks. Unlike multi-armed bandit model, deep Q learning is applied to consider rapidly changing situations. Due to the delay of RTT data, we also suggest compensation algorithm of the delayed reward. Moreover, we implement testbed learning server to evaluate the performance of proposed algorithm. The learning server contains distributed database and tensorflow module to efficiently operate deep learning algorithm. By means of simulation, we showed that the proposed algorithm has better performance than lowest RTT about 20%.