• Title/Summary/Keyword: Reliability Function

Search Result 2,048, Processing Time 0.026 seconds

Fuzzy reliability analysis of laminated composites

  • Chen, Jianqiao;Wei, Junhong;Xu, Yurong
    • Structural Engineering and Mechanics
    • /
    • v.22 no.6
    • /
    • pp.665-683
    • /
    • 2006
  • The strength behaviors of Fiber Reinforced Plastics (FRP) Composites can be greatly influenced by the properties of constitutive materials, the laminate structures, and load conditions etc, accompanied by many uncertainty factors. So the reliability study on FRP is an important subject of research. Many achievements have been made in reliability studies based on the probability theory, but little has been done on the roles played by fuzzy variables. In this paper, a fuzzy reliability model for FRP laminates is established first, in which the loads are considered as random variables and the strengths as fuzzy variables. Then a numerical model is developed to assess the fuzzy reliability. The Monte Carlo simulation method is utilized to compute the reliability of laminas under the maximum stress criterion. In the second part of this paper, a generalized fuzzy reliability model (GFRM) is proposed. By virtue of the fact that there may exist a series of states between the failure state and the function state, a fuzzy assumption for the structure state together with the probabilistic assumption for strength parameters is adopted to construct the GFRM of composite materials. By defining a generalized limit state function, the problem is converted to the conventional reliability formula that enables the first-order reliability method (FORM) applicable in calculating the reliability index. Several examples are worked out to show the validity of the models and the efficiency of the methods proposed in this paper. The parameter sensitivity analysis shows that some of the mean values of the strength parameters have great influence on the laminated composites' reliability. The differences resulting from the application of different failure criteria and different fuzzy assumptions are also discussed. It is concluded that the GFRM is feasible to use, and can provide an effective and synthetic method to evaluate the reliability of a system with different types of uncertainty factors.

Joint reliability importance of series-parallel systems

  • Dewan, I.;Jain, K.
    • International Journal of Reliability and Applications
    • /
    • v.12 no.2
    • /
    • pp.103-116
    • /
    • 2011
  • A series-parallel system with independent but non-identical components is considered. The expressions have been derived for the joint reliability importance (JRI) of m (${\geq}2$) components, chosen from a series-parallel system. JRIs of components of two different series-parallel systems are studied analytically and graphically.

  • PDF

Study of Reliability-Based Robust Design Optimization Using Conservative Approximate Meta-Models (보수적 근사모델을 적용한 신뢰성 기반 강건 최적설계 방법)

  • Sim, Hyoung Min;Song, Chang Yong;Lee, Jongsoo;Choi, Ha-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.80-85
    • /
    • 2012
  • The methods of robust design optimization (RDO) and reliability-based robust design optimization (RBRDO) were implemented in the present study. RBRDO is an integrated method that accounts for the design robustness of an objective function and for the reliability of constraints. The objective function in RBRDO is expressed in terms of the mean and standard deviation of an original objective function. Thus, a multi-objective formulation is employed. The regressive approximate models are generated via the moving least squares method (MLSM) and constraint-feasible moving least squares method (CF-MLSM), which make it possible to realize the feasibility regardless of the multimodality/nonlinearity of the constraint function during the approximate optimization processes. The regression model based RBRDO is newly devised and its numerical characteristics are explored using the design of an actively controlled ten bar truss structure.

Estimation of Reliability of a System Based on Two Typed Data (두 형태의 데이터를 이용하여 시스템의 신뢰도를 추정하는 방법)

  • Shim, Kyubark;Yim, Jaegeol
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.3
    • /
    • pp.336-341
    • /
    • 2013
  • Reliability analysis for various forms of data obtained from complicated electronic circuits is a necessary process for guaranteeing reliability of the system. Reliability assessment of a system starts from the estimation of failure function. A system can be composed of one item, but in most cases, several items are correlated to each other in one system. This study suggests an estimation method of failure function and reliabilities for infrequent failure events, by considering different form of data obtained from different systems. Estimates of failure function and reliabilities for complex systems composed of two or more items in parallel or in mixed connections can be done by further application of proposed method.

Estimation of Coverage Growth Functions

  • Park, Joong-Yang;Lee, Gye-Min;Kim, Seo-Yeong
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.5
    • /
    • pp.667-674
    • /
    • 2011
  • A recent trend in software reliability engineering accounts for the coverage growth behavior during testing. The coverage growth function (representing the coverage growth behavior) has become an essential component of software reliability models. Application of a coverage growth function requires the estimation of the coverage growth function. This paper considers the problem of estimating the coverage growth function. The existing maximum likelihood method is reviewed and corrected. A method of minimizing the sum of squares of the standardized prediction error is proposed for situations where the maximum likelihood method is not applicable.

Selection of a Predictive Coverage Growth Function

  • Park, Joong-Yang;Lee, Gye-Min
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.6
    • /
    • pp.909-916
    • /
    • 2010
  • A trend in software reliability engineering is to take into account the coverage growth behavior during testing. A coverage growth function that represents the coverage growth behavior is an essential factor in software reliability models. When multiple competitive coverage growth functions are available, there is a need for a criterion to select the best coverage growth functions. This paper proposes a selection criterion based on the prediction error. The conditional coverage growth function is introduced for predicting future coverage growth. Then the sum of the squares of the prediction error is defined and used for selecting the best coverage growth function.

Development of Reliability Contribution Function of Power System including Wind Turbine Generators combined with Battery Energy Storage System (풍력발전기와 BESS를 결합한 전력계통의 공급신뢰도 기여함수)

  • Oh, Ungjin;Lee, Yeonchan;Choi, Jaeseok;Yoon, Yongbeum;Chang, Byunghoon;Cha, Jun-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.371-381
    • /
    • 2016
  • This paper presents a study on reliability assessment and new contribution function development of power system including Wind Turbine Generator(WTG) combined with Battery Energy Storage System(BESS). This paper develops and proposes new reliability contribution function of BESS installed at wind farms. The methodology of reliability assessment, using Monte Carlo Simulation(MCS) method to simulate sample state duration, is proposed in detail. Forced Outage Rate(FOR) considered probabilistic approach for conventional generators is modelled in this paper. The penetration of large wind power can make risk to power system adequacy, quality and stability. Although the fluctuation of wind power, BESS installed at wind farms may smooth the wind power fluctuation. Using small size system as similar as Jeju island power system, a case study of reliability evaluation and new proposed contribution function of power system containing WTG combined with BESS is demonstrated in this paper, which would contributes to BESS reliability contribution and assessment tools of actual power system in future.

A study on the clinical usefulness, validity, and test-retest reliability of the Spirokit, a device that combines the pulmonary function test and respiratory muscle strength test

  • Kim, Byeong-Soo;Lee, Myung-Mo
    • Physical Therapy Rehabilitation Science
    • /
    • v.9 no.2
    • /
    • pp.120-130
    • /
    • 2020
  • Objective: This study was conducted to identify the clinical usefulness, validity, and reliability of the Spirokit, a device that combines the pulmonary function test (PFT) and respiratory muscle strength (RMS) test. Design: Cross-sectional study. Methods: Forty young adults (male: 23, female: 17) participated in a PFT and a RMS test. The concurrent validity for pulmonary function was assessed by comparing data obtained from MicroQuark and the Spirokit and the agreements between the MicroRPM and the Spirokit for RMS were compared. The test-retest reliability of the Spirokit was determined by comparing data obtained from the first and second sessions. The test and retest were performed at the same time after one day for the PFT and RMS test. Validity was estimated using intraclass correlation coefficients (ICCs), and by calculating 95% limits of agreement (LoA). To estimate interrater reliability, ICCs were calculated. Results: The Spirokit showed a high agreement intra class coefficient (ICC [2, 1]): 0.978-0.999, 95% limits of agreements (95% LOA): -0.798 to 0.847 with MicroQuark. It also showed a high level of concordance ICC (2, 1): 0.992 to 0.993, 95% LOA: -9.313 to 11.169 with MicroRPM. The test-retest reliability of the Spirokit was analyzed using ICC (2, 1), and showed a high level of reliability (ICC [2,1]=0.960 to 0.998). Standard error of measurement % (SEM%) was 0.12% to 3.39%, and minimum detectable change% (MDC%) was 0.02% to 3.79%, indicating high level of reliability. Conclusions: The Spirokit is a device with high validity and reliability that can be used to simultaneously measure PFT and RMS tests.

Design Method of Multi-Stage Gear Drive (Volume Minimization and Reliability Improvement) (다단 기어장치의 설계법(체적 감소 및 신뢰성 향상))

  • Park, Jae-Hee;Lee, Joung-Sang;Chong, Tae-Hyong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.36-44
    • /
    • 2007
  • This paper is focused on the optimum design for decreasing volume and increasing reliability of multi-stage gear drive. For the optimization on volume and reliability, multi-objective optimization is used. The genetic algorithm is introduced to multi-objective optimization method and it is used to develop the optimum design program using exterior penalty function method to solve the complicated subject conditions. A 5 staged gear drive(geared motor) is chosen to compare the result of developed optimum design method with the existing design. Each of the volume objective, reliability objective, and volume-reliability multi-objectives are performed and compared with existing design. As a result, optimum solutions are produced, which decrease volume and increase reliability. It is shown that the developed design method is good for multi-stage gear drive design.

Commercial Finite Element Program-based Reliability Analysis of Dam Structures (상용 유한요소 프로그램에 기초한 댐 구조물의 신뢰성해석)

  • 허정원;이정학
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.103-110
    • /
    • 2003
  • A hybrid structural reliability analysis method that integrates a commercial finite element program and a reliability analysis algorithm is proposed to estimate the safety of real structures in this paper. Since finite element method (FEM) is most commonly and widely used in the analysis and design practice of real structures, it appears to be necessary to use general FEM program in the structural reliability analysis. In this case, simple conventional reliability methods cannot be used because the limit state function can only be expressed in an algorithmic form. The response surface method(RSM)-based reliability algorithm with the first-order reliability method (FORM) found to be ideal in this respect and is used in this paper. The intention of use of RSM is to develop, albeit approximately, an explicit expression of the limit state function for real structures. The applicability of the proposed method to real structures is examined with help of the example in consideration of a concrete dam. Both the strength and serviceability limit states are considered in this example.

  • PDF