• Title/Summary/Keyword: Release mechanism

Search Result 899, Processing Time 0.031 seconds

Implosion Analysis of Circular Cylinder using Simplified Model (간이물리모델을 이용한 원통형 압력용기의 내파해석)

  • Nho, In Sik;Cho, Sang Rai;Kim, Yong Yook;Han, Soonhung;Cho, Yoon Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • The implosion phenomena of pressure vessels operating in deep water under extremely high external pressure have been well known. The drastic energy release to ambient field in the form of pressure pulse is accompanied with catastrophic collapse of shell structure. Such a proximity shock wave could be a serious threat to the structural integrity of adjacent submerged body and several suspected accidents have been reported. In this study, basic research for the occurrence and development of shock wave due to implosion was carried out. The mechanism of pressure pulse generation and energy dissipation were investigated, and a simplified kinematic model to approximate the collapse modes of circular tubes which can be generated by external pressure and implosion was examined. Using the simplified kinematic model, the process of energy dissipation was formulated, and the magnitude of released pressure shock wave was estimated quantitatively. To investigate the validity of developed kinematic model and shock wave estimation process, the results from a nonlinear FE analysis code and collapse test carried out using pressure chamber were compared with the results from the developed kinematic model.

The Inhibitory Mechanism on Acetylcholine-Induced Contraction of Bladder Smooth Muscle in the Streptozotocin-Induced Diabetic Rat

  • Han, Jong Soo;Kim, Su Jin;Nam, Yoonjin;Lee, Hak Yeong;Kim, Geon Min;Kim, Dong Min;Sohn, Uy Dong
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.101-106
    • /
    • 2019
  • Most diabetic patients experience diabetic mellitus (DM) urinary bladder dysfunction. A number of studies evaluate bladder smooth muscle contraction in DM. In this study, we evaluated the change of bladder smooth muscle contraction between normal rats and DM rats. Furthermore, we used pharmacological inhibitors to determine the differences in the signaling pathways between normal and DM rats. Rats in the DM group received an intraperitoneal injection of 65 mg/kg streptozotocin and measured blood glucose level after 14 days to confirm DM. Bladder smooth muscle contraction was induced using acetylcholine (ACh, $10^{-4}M$). The materials such as, atropine (a muscarinic receptor antagonist), U73122 (a phospholipase C inhibitor), DPCPX (an adenosine $A_1$ receptor antagonist), udenafil (a PDE5 inhibitor), prazosin (an ${\alpha}_1$-receptor antagonist), papaverine (a smooth muscle relaxant), verapamil (a calcium channel blocker), and chelerythrine (a protein kinase C inhibitor) were pre-treated in bladder smooth muscle. We found that the DM rats had lower bladder smooth muscle contractility than normal rats. When prazosin, udenafil, verapamil, and U73122 were pre-treated, there were significant differences between normal and DM rats. Taken together, it was concluded that the change of intracellular $Ca^{2+}$ release mediated by PLC/IP3 and PDE5 activity were responsible for decreased bladder smooth muscle contractility in DM rats.

Mobility of silver nanoparticles (AgNPs) and oxidative degradation of endocrine disrupting chemicals by saturated column experiments (포화컬럼실험에서 산화공정을 적용한 내분비계 장애물질의 제거 및 은나노물질의 거동 연구)

  • Kim, Yejin;Heo, Jiyong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.6
    • /
    • pp.499-505
    • /
    • 2018
  • We applied column experiments to investigate the environmental fate and transport of silver nanoparticles(AgNPs) in fully saturated conditions of porous media. These column experiments were performed to emphasize oxidation method with $H_2O_2$ concentration and acidic conditions. The mobility of AgNPs was decreased with the increasing ionic strength that the surface charge of AgNPs(zeta potential) was neutralized with the presence of positive ions of $Na^+$. Additionally, it was also affected due to that not only more increased aggregated size of AgNPs and surface charge of quartz sand. The decreased breakthrough curves(BTCs) of bisphenol-A(BPA) and $17{\alpha}$-ethynylestradiol(EE2) were removed approximately 35.3 and 40%. This is due to that endocrine disrupting chemicals(EDCs) were removed with the release of $OH{\cdot}$ radicals by the fenton-like mechanisms from acidic and fenton-like reagent presenting. This results considered that higher input AgNPs with acidic conditions is proved to realistic in-situ oxidation method. Overall, it should be emphasized that a set of column experiments employed with adjusting pH and $H_2O_2$ concentration in proved to be effective method having potential ability of in-situ degradation for removing organic contaminants such as BPA and EE2.

Cytopathic Change and Inflammatory Response of Human Corneal Epithelial Cells Induced by Acanthamoeba castellanii Trophozoites and Cysts

  • Sohn, Hae-Jin;Seo, Ga-Eun;Lee, Jae-Ho;Ham, A-Jeong;Oh, Young-Hwan;Kang, Heekyoung;Shin, Ho-Joon
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.3
    • /
    • pp.217-223
    • /
    • 2019
  • Acanthamoeba castellanii has ubiquitous distribution and causes primary acanthamoebic keratitis (AK). AK is a common disease in contact lens wearers and results in permanent visual impairment or blindness. In this study, we observed the cytopathic effect, in vitro cytotoxicity, and secretion pattern of cytokines in human corneal epithelial cells (HCECs) induced by A. castellanii trophozoites and/or cysts. Morphological observation revealed that panked dendritic HCECs co-cultured with amoeba cysts had changed into round shape and gradually died. Such changes were more severe in co-culture with cyst than those of co-cultivation with trophozoites. In vitro cytotoxicity assay revealed the highest cytotoxicity to HCECs in the co-culture system with amoeba cysts. A. castellanii induced the expression of $IL-1{\alpha}$, IL-6, IL-8, and CXCL1 in HCECs. Secreted levels of $IL-1{\alpha}$, IL-6, and IL-8 in HCECs co-cultured with both trophozoites and cysts were increased at an early incubation time (3 and 6 hr). These results suggested that cytopathic changes and pro-inflammatory cytokines release of HCECs in response to A. castellanii, especially amoebic cysts, are an important mechanism for AK development.

Formosanin C attenuates lipopolysaccharide-induced inflammation through nuclear factor-κB inhibition in macrophages

  • Yin, Limin;Shi, Chaohong;Zhang, Zhongchen;Wang, Wensheng;Li, Ming
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.5
    • /
    • pp.395-401
    • /
    • 2021
  • Extended inflammation and cytokine production pathogenically contribute to a number of inflammatory disorders. Formosanin C (FC) is the major diosgenin saponin found in herb Paris formosana Hayata (Liliaceae), which has been shown to exert anti-cancer and immunomodulatory functions. In this study, we aimed to investigate anti-inflammatory activity of FC and the underlying molecular mechanism. RAW264.7 macrophages were stimulated with lipopolysaccharide (LPS) or pretreated with FC prior to being stimulated with LPS. Thereafter, the macrophages were subjected to analysis of the expression levels of pro-inflammatory mediators, including nitric oxide (NO), prostaglandin E2 (PGE), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, as well as two relevant enzymes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). The analysis revealed that FC administration blunted LPS-induced production of NO and PGE in a dose-dependent manner, while the expression of iNOS and COX-2 at both mRNA and protein levels was inhibited in LPS-stimulated macrophages pre-treated with FC. Moreover, LPS stimulation upregulated mRNA expression and medium release of TNF-α, IL-1β, and IL-6, whereas this effect was blocked upon FC pre-administration. Mechanistic studies showed that inhibitory effects of FC on LPS-induced inflammation were associated with a downregulation of IκB kinase, IκB, and p65/NF-κB pathway. Taken together, these data suggest that FC possesses an inflammation-suppressing activity, thus being a potential agent for the treatment of inflammation-associated disorders.

Anti-stress Effects of Natural Products from Jeju Island in Zebrafish (제브라피쉬에서의 제주도 천연추출물의 항스트레스 효과)

  • Lee, Jeongwon;Lee, Seungheon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.85-85
    • /
    • 2019
  • Objective: In this study, the anti-stress effects of extract of Hydrangeae Dulcis Folium (EHDF) or ethalonic extract of Opuntiaficus-indica (EOF) of natural extracts from Jeju Island were investigated. Methods: We performed measurement of whole-body cortisol level and behavioral experiments including the novel tank test (NTT) or the open field test (OFT) to assess stress responses in zebrafish. To induce physical stress, we used the net handling stress (NHS). Fish were treated with EOF or EHDF for 6 min before they were exposed to stress. And then, we sacrificed fish for collecting body fluid from whole-body or conducted behavioural tests, including novel tank test and open field test, were evaluated to observe anxiety-like behaviours and locomotion. We used the cortisol enzyme-linked immunoassay kit to measure the amount of cortisol in each zebrafish sample. Results: The results indicate that increased anxiety-like behaviours in novel tank test and open field test under stress were prevented by treatment with both EOF and EHDF (P < 0.05). Moreover, compared with the unstressed group, which was not treated with NHS, the whole-body cortisol level was significantly increased by treatment with NHS. Compared with the NHS-treated stressed control group, pre-treatment with each EHDF and EOF for 6 min significantly prevented the NHS-increased whole-body cortisol level (P < 0.05). Conclusions: In conclusion these results suggest that both EOF and EHDF pretreatment may prevent stress responses and that its mechanism of action may be related to its positive effects on cortisol release.

  • PDF

Ginsenoside Rg3 reduces the adhesion, invasion, and intracellular survival of Salmonella enterica serovar Typhimurium

  • Mechesso, Abraham F.;Quah, Yixian;Park, Seung-Chun
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.75-85
    • /
    • 2021
  • Background: Invasive infections due to foodborne pathogens, including Salmonella enterica serovar Typhimurium, are prevalent and life-threatening. This study aimed to evaluate the effects of ginsenoside Rg3 (Rg3) on the adhesion, invasion, and intracellular survival of S. Typhimurium. Methods: The impacts of Rg3 on bacterial growth and host cell viability were determined using the time kill and the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assays, respectively. Gentamicin assay and confocal microscopic examination were undertaken to determine the effects of Rg3 on the adhesive and invasive abilities of S. Typhimurium to Caco-2 and RAW 264.7 cells. Quantitative reverse transcription polymerase chain reaction was performed to assess the expression of genes correlated with the adhesion, invasion, and virulence of S. Typhimurium. Results: Subinhibitory concentrations of Rg3 significantly reduced (p < 0.05) the adhesion, invasion, and intracellular survival of S. Typhimurium. Rg3 considerably reduced (p < 0.05) the bacterial motility as well as the release of nitrite from infected macrophages in a concentration-dependent manner. The expression of genes related to the adhesion, invasion, quorum sensing, and virulence of S. Typhimurium including cheY, hilA, OmpD, PrgK, rsgE, SdiA, and SipB was significantly reduced after Rg3 treatment. Besides, the compound downregulated rac-1 and Cdc-42 that are essential for actin remodeling and membrane ruffling, thereby facilitating Salmonella entry into host cells. This report is the first to describe the effects of Rg3 on "trigger" entry mechanism and intracellular survival S. Typhimurium. Conclusion: Rg3 could be considered as a supplement agent to prevent S. Typhimurium infection.

Structural Controls on Crustal Fluid Redistribution and Hydrothermal Gold Deposits: A Review on the Suction Pump and Fault Valve Models (지각 내 열수 재분배와 금광상 형성의 구조적 제어: 석션 펌프 및 단층 밸브 모델에 대한 리뷰)

  • Kwak, Yujung;Park, Seung-Ik;Park, Changyun
    • Economic and Environmental Geology
    • /
    • v.55 no.2
    • /
    • pp.183-195
    • /
    • 2022
  • Hydrothermal gold deposits are evidence of intensive fluid flow through fault zones, and the resultant vein structures and textures reflect the fluid redistribution mechanism. This review introduces the suction pump and fault valve models as fluid circulation mechanisms causing hydrothermal gold deposits in the frameworks of the concepts of fault mechanics. The suction pump and fault valve models describe faulting-driven heterogeneous fluid flow and related vein formation mechanisms, accompanied by the cycles of (1) stress accumulation and fluid pressure build-up and (2) seismic rupture and stress/fluid pressure release. The models are available under different geological environments (stress conditions), and the vein structures and textures representing the mechanisms have similarities and differences. The suction pump and fault valve models must help better to interpret the origins of hydrothermal gold deposits in Korea and improve the efficiency of further exploration.

Solidification of uranium mill tailings by MBS-MICP and environmental implications

  • Niu, Qianjin;Li, Chunguang;Liu, Zhenzhong;Li, Yongmei;Meng, Shuo;He, Xinqi;Liu, Xinfeng;Wang, Wenji;He, Meijiao;Yang, Xiaolei;Liu, Qi;Liu, Longcheng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3631-3640
    • /
    • 2022
  • Uranium mill tailing ponds (UMTPs) are risk source of debris flow and a critical source of environmental U and Rn pollution. The technology of microbial induced calcium carbonate precipitation (MICP) has been extensively studied on reinforcement of UMTs, while little attention has been paid to the effects of MICP on U & Rn release, especially when incorporation of metakaolin and bacillus subtilis (MBS). In this study, the reinforcement and U & Rn immobilization role of MBS -MICP solidification in different grouting cycle for uranium mill tailings (UMTs) was comprehensively investigated. The results showed that under the action of about 166.7 g/L metakaolin and ~50% bacillus subtilis, the solidification cycle of MICP was shortened by 50%, the solidified bodies became brittle, and the axial stress increased by up to 7.9%, and U immobilization rates and Rn exhalation rates decrease by 12.6% and 0.8%, respectively. Therefore, the incorporation of MBS can enhance the triaxial compressive strength and improve the immobilization capacity of U and Rn of the UMTs bodies solidified during MICP, due to the reduction of pore volume and surface area, the formation of more crystals general gypsum and gismondine, as well as the enhancing of coprecipitation and encapsulation capacity.

Soil Washing Technology for Sr and Cs-contaminated Soil Near Nuclear Power Plants using Calcium and Potassium Based Solutions (칼슘 및 칼륨 용액을 이용한 원자력발전소 주변 스트론튬과 세슘 오염토양 세척기술 연구)

  • Song, Hojae;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.2
    • /
    • pp.76-86
    • /
    • 2022
  • Calcium (Ca) and potassium (K) were introduced to remove Sr and Cs in soil, respectively. Four factor and three level Box-Bhenken design was employed to determine the optimal washing condition of Ca- and K-based solutions, and the ranges tested were 0.1 to 1 M of Ca or K, L/S ratio of 5 to 20, washing time of 0.5 to 2 h, and pH of 2 to 7. The optimal washing condition determined was 1 M of Ca or K, L/S ratio of 20, washing time of 1 h, and pH of 2, and Ca-based and K-based solutions showed 68 and 81% removal efficiency for Sr and Cs, respectively in soil. For comparison, widely used conventional washing agents such as 0.075 M EDTA, 0.01 M citric acid, 0.01 M oxalic acid, and 0.05 M phosphoric acid were tested, and they showed 25 to 30% of Sr and Cs removal efficiency. Tessier sequential extraction was employed to identify the changes in chemical forms of Sr and Cs during the washing. In contrast to the conventional washing agents, Ca-based and K-based solutions were able to release relatively strongly bound forms of Sr and Cs such as Fe/Mn-oxide and organic matter bound forms, suggesting the involvement of direct substitution mechanism, probably due to the physicochemical similarities between Sr-Ca and Cs-K.