Browse > Article
http://dx.doi.org/10.9719/EEG.2022.55.2.183

Structural Controls on Crustal Fluid Redistribution and Hydrothermal Gold Deposits: A Review on the Suction Pump and Fault Valve Models  

Kwak, Yujung (Department of Geology, Kyungpook National University)
Park, Seung-Ik (Department of Geology, Kyungpook National University)
Park, Changyun (Department of Geology, Kyungpook National University)
Publication Information
Economic and Environmental Geology / v.55, no.2, 2022 , pp. 183-195 More about this Journal
Abstract
Hydrothermal gold deposits are evidence of intensive fluid flow through fault zones, and the resultant vein structures and textures reflect the fluid redistribution mechanism. This review introduces the suction pump and fault valve models as fluid circulation mechanisms causing hydrothermal gold deposits in the frameworks of the concepts of fault mechanics. The suction pump and fault valve models describe faulting-driven heterogeneous fluid flow and related vein formation mechanisms, accompanied by the cycles of (1) stress accumulation and fluid pressure build-up and (2) seismic rupture and stress/fluid pressure release. The models are available under different geological environments (stress conditions), and the vein structures and textures representing the mechanisms have similarities and differences. The suction pump and fault valve models must help better to interpret the origins of hydrothermal gold deposits in Korea and improve the efficiency of further exploration.
Keywords
Fault Reactivation; Hydrothermal Gold Deposit; Fluid Pressure; Suction Pump Model; Fault Valve Model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Loucks, R.R. and Mavrogenes, J.A. (1999) Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions. Science, v.284, p.2159-2163.   DOI
2 So, C.S. and Shelton, K.L. (1987a) Stable isotope and fluid inclusion studies of gold-and silver-bearing hydrothermal vein deposits, Cheonan-Cheongyang-Nonsan mining district, Republic of Korea; Cheonan area. Econ. Geol., v.82, p.987-1000.   DOI
3 Faulkner, D.R., Jackson, C.A.L., Lunn, R.J., Schlische, R.W., Shipton, Z.K., Wibberley, C.A.J. and Withjack, M.O. (2010) A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J. Struct. Geol., v.32, p.1557-1575.   DOI
4 So, C.S. and Shelton, K.L. (1987b) Fluid inclusion and stable isotope studies of gold-silver-bearing hydrothermal vein deposits, Yeoju mining district, Republic of Korea. Econ. Geol., v.82, p.1309-1318.   DOI
5 Park, S.-I. Kwon, S. Kim, S.W., Hong, P.S. and Santosh, M. (2018) A Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula: New structural, geochemical, and chronological evidence. J. Asian Earth Sci., v.157, p.166-186.   DOI
6 Kerrich, R. (1986) Fluid infiltration into fault zones: chemical, isotopic, and mechanical effects. Pure Appl. Geophys., v.124, p.225-268.   DOI
7 Kim, N., Park, S.-I. and Choi, J.-H. (2021) Internal architecture and earthquake rupture behavior of a long-lived intraplate strike-slip fault: A case study from the Southern Yangsan Fault, Korea. Tectonophysics, v.816, 229006.   DOI
8 Koh, S.M., Ryoo, C.R. and Song, M.S. (2003) Mineralization characteristics and structural controls of hydrothermal deposits in the Gyeongsang Basin, South Korea. Resour. Geol., v.53, p.175-192.   DOI
9 Kolb, J., Rogers, A., Meyer, F.M. and Vennemann, T.W. (2004) Development of fluid conduits in the auriferous shear zones of the Hutti Gold Mine, India: evidence for spatially and temporally heterogeneous fluid flow. Tectonophysics, v.378, p.65-84.   DOI
10 Park, S.-I., Noh, J., Cheong, H.J., Kwon, S., Song, Y., Kim, S.W. and Santosh, M. (2019) Inversion of two-phase extensional basin systems during subduction of the Paleo-Pacific Plate in the SW Korean Peninsula: Implication for the Mesozoic "Laramide-style" orogeny along East Asian continental margin. Geosci. Front., v.10, p.909-925.   DOI
11 Nguyen, P.T., Harris, L.B., Powell, C.M. and Cox, S.F. (1998) Fault-valve behaviour in optimally oriented shear zones: an example at the Revenge gold mine, Kambalda, Western Australia. J. Struct. Geol., v.20, p.1625-1640.   DOI
12 Lee, H.K., Yoo, B.-C., Hong, D.P. and Kim, K.-W. (1995) Structural Constraints on Gold-Silver-Bearing Quartz Mineralization in Strike-slip Fault System, Samkwang Mine, Korea. Econ. Environ. Geol., v.28, p.579-585.
13 Micklethwaite, S., Ford, A., Witt, W. and Sheldon, H.A. (2015) The where and how of faults, fluids and permeability-insights from fault stepovers, scaling properties and gold mineralisation. Geofluids, v.15, p.240-251.   DOI
14 Morris, A., Ferrill, D.A. and Henderson, D.B. (1996) Slip-tendency analysis and fault reactivation. Geology, v.24, p.275-278.   DOI
15 Nadai, A. (1950) Theory of Flow and Fracture of Solids. McGraw-Hill, New York, v.1, p.572.
16 Oliver, N.H.S. and Bons, P.D. (2001) Mechanisms of fluid flow and fluid-rock interaction in fossil metamorphic hydrothermal systems inferred from vein-wallrock patterns, geometry and microstructure. Geofluids, v.1, p.137-162.   DOI
17 Park, H.I. (1983) Ore and fluid inclusions of the Tongyeong gold-silver deposits. Econ. Environ. Geol., v.16, p.245-251.
18 Robb, L. (2005) Introduction to ore-forming processes. Blackwell publish, 144p.
19 Sibson, R.H. (1987) Earthquake rupturing as a mineralizing agent in hydrothermal system. Geology, v.15, p.701-704.   DOI
20 Peterson, E.C. and Mavrogenes, J.A. (2014) Linking high-grade gold mineralization to earthquake-induced fault-valve processes in the Porgera gold deposit, Papua New Guinea. Geology, v.42, p.383-386.   DOI
21 Robert, F. and Kelly, W.C. (1987) Ore-forming fluids in Archean gold-bearing quartz veins at the Sigma Mine, Abitibi greenstone belt, Quebec, Canada. Econ. Geol., v.82, p.1464-1482.   DOI
22 Sibson, R.H. (1974) Frictional constraints on thrust, wrench and normal faults. Nature, v.249, p.542-544.   DOI
23 Scholz, C.H. (1988) The brittle-plastic transition and the depth of seismic faulting. Geol. Rundsch., v.77, p.319-328.   DOI
24 Shelly, D.R., Taira, T.A., Prejean, S.G., Hill, D.P. and Dreger, D.S. (2015) Fluid-faulting interactions: Fracture-mesh and fault-valve behavior in the February 2014 Mammoth Mountain, California, earthquake swarm. Geophys. Res. Lett., v.42, p.5803-5812.   DOI
25 Shimazaki, H., Lee, M.S., Tsusue, A. and Kaneda, H. (1986) Three Epochs of Gold Mineralization in South Korea. Min. Geol. v.36, p.265-272.
26 Sibson, R.H. (1977) Fault rocks and fault mechanisms. J. Geol. Soc. London, v.133, p.191-213.   DOI
27 Sibson, R.H. (1981) Fluid flow accompanying faulting: field evidence and models. In Simpson, D. W. and Richards, P.G., Earthquake prediction: an international review, Am. Geophys. Union. Maurice Ewing, v.4, p.593-603.
28 Sibson, R.H. (1985) A note on fault reactivation. J. Struct. Geol., v.7, p.751-754.   DOI
29 Sibson, R.H. (1986) Earthquakes and rock deformation in crustal fault zones. Annu. Rev. Earth Planet Sci., v.14, p.149-175.   DOI
30 Sibson, R.H. (1990) Conditions for fault-valve behaviour. Geol. Soc. Spec. Publ., v.54, p.15-28.   DOI
31 Sibson, R.H., Robert, F. and Poulsen, K.H. (1988) High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits. Geology, v.16, p.551-555.   DOI
32 Jaeger, J.C., Cook, N.G.W. and Zimmerman, R.W. (2007) Fundamentals of Rock Mechanics. Blackwell, 475p.
33 Sibson, R.H. (1992a) Earthquake faulting, induced fluid flow, and fault-hosted gold-quartz mineralization. In Bartholonew, M. J., Hyndman, D. W., Moogk, D. W. and Mason, R. (ed.). Basement Tectonics 8. Springer, Dordrecht, p.603-614.
34 Sibson, R.H. (1992b) Fault-valve behavior and the hydrostatic-lithostatic fluid pressure interface. Earth Sci. Rev., v.32, p.141-144.   DOI
35 Sibson, R.H. (1994) Crustal stress, faulting and fluid flow. Geol. Soc. Spec. Publ., v.78, p.69-84.   DOI
36 Sibson, R.H. (2001) Seismogenic framework for hydrothermal transport and ore deposition. Rev. Econ. Geol. v.14, p.25-50.
37 Sibson, R.H. (2020) Preparation zones for large crustal earthquakes consequent on fault-valve action. Earth, Planets Space, v.72, p.1-20.   DOI
38 Sibson, R.H., Moore, J.M.M. and Rankin, A.H. (1975) Seismic pumping-a hydrothermal fluid transport mechanism. J. Geol. Soc. London, v.131, p.653-659.   DOI
39 So, C.S., Chi, S.J. and Choi, S.H. (1987) Genetic Environments of the Geumryong Gold-Silver Deposit, Korea. J. Geol. Soc. Korea, v.23, p.321-330.
40 So, C.S., Yun, S.T. and Kwon, S.H. (1999a) Fluid inclusion and stable isotope studies of mesothermal gold vein deposits in metamorphic rocks of central Sobaegsan Massif, Korea: Youngdong area. Econ. Environ. Geol., v.32, p.561-573.
41 So, C.S., Yun, S.T., Heo, C.H. and Youm, S.J. (1999b) Geochemistry and genesis of mesothermal gold deposits in Korea: Base metal-rich gold mineralization of the Byungjibang mine, Hweongsung area. J. Min. Petro. Econ. Geol., v.94, p.65-82.   DOI
42 Byerlee, J. (1978) Friction of rocks. Pure Appl. Geophys., v.116, p.615-626.   DOI
43 Anderson, E.M. (1905) The dynamics of faulting. Trans. Edinburgh. Geol. Soc., v.8, p.387-402.   DOI
44 Blenkinsop, T., Tripp, G. and Gillen, D. (2018) The relationship between mineralization and tectonics at the Kainantu gold-copper deposit, Papua New Guinea. Geol. Soc. Spec. Publ., v.453, p.269-288.   DOI
45 Blenkinsop, T.G., Oliver, N.H.S., Dirks, P.G.H.M., Nugus, M., Tripp, G. and Sanislav, I. (2020) Structural geology applied to the evaluation of hydrothermal gold deposits. Rev. Econ. Geol., v.21, p.1-23.
46 Bons, P.D. (2000) The formation of veins and their microstructures. In: Jessell, M. W., Urai, J.L. (ed.), Stress, Strain and Structure, A volume in Honour of W D Means. VirtualExplorer., v.2, p.12.
47 Bons, P.D., Elburg, M.A. and Gomez-Rivas, E. (2012) A review of the formation of tectonic veins and their microstructures. J. Struct. Geol., v.43, p.33-62.   DOI
48 Choi, S., Park, S., Kim, S., Kim, C. and Oh, C. (2006) Mesozoic Gold-Silver Mineralization in South Korea: Metallogenic Provinces Reestimated to the Geodynamic Setting. Econ. Environ. Geol., v.39, p.567-581.
49 Choi, S.-G., Kwon, S.-T., Lee, J.-H., So, C.S. and Pak, S.J. (2005a) Origin of Mesozoic gold deposits in South Korea. Isl. Arc, v.14, p.102-114.   DOI
50 Choi, S.-G., Ryu, I.-C., Pak, S.J., Wee, S.-M., Kim, C.S. and Park, M.-E. (2005b) Cretaceous epithermal gold-sliver mineralization and geodynamic environment, Korea. Ore Geol. Rev., v.26, p.115-135.   DOI
51 Choi, S., Pak, S.J., Choi, S. and Shin, H.J. (2001) Mesozoic Granitoids and Associated Gold-Silver Mineralization in Korea. Econ. Environ. Geol., v.34, p.25-38.
52 Allen, A.R. (1979) Mechanism of frictional fusion in fault zones. J. Struct. Geol., v.1, p.231-243.   DOI
53 Bohlke, J.K. (1999) Mother Lode gold. In: Moores, E.M., Sloan, D. and Stout, D.L. (ed.) Classic cordilleran concepts: a view from California. Boulder, Geol. Soc. Am. Spec. Pap., v.338, p.55-67.
54 Boullier, A.M. and Robert, F. (1992) Palaeoseismic events recorded in Archaean gold-quartz vein networks, Val d'Or, Abitibi, Quebec, Canada. J. Struct. Geol., v.14, p.161-179.   DOI
55 Cho, D.-L. and Kwon. S.-T. (1994) Hornblende Geobarometry of the Mesozoic Granitoids in South Korea and the Evolution of Crustal Thickness. J. Geol. Soc. Korea. v.30, p.41-61.
56 Behrmann, J.H. (1991) Conditions for hydrofracture and the fluid permeability of accretionary wedges. Earth Planet. Sci. Lett. v.107, p.550-558.   DOI
57 Twiss, R.J. and Moores, E.M. (1992) Structural geology. Macmillan. 64p.
58 Stuwe, K. (1998) Tectonic constraints on the timing relationships of metamorphism, fluid production and gold-bearing quartz vein emplacement. Ore Geol. Rev., v.13, p.219-228.   DOI
59 Sugaki, A., Kim, O.J. and Kim, W.J. (1986) Gold and Silver Ores from the Geumwang Mine in South Korea and Their Mineralization. Min. Geol., v.36, p.555-572.
60 Townend, J. and Zoback, M.D. (2000) How faulting keeps the crust strong. Geology, v.28, p.399-402.   DOI
61 Weatherley, D.K. and Henley, R.W. (2013) Flash vaporization during earthquakes evidenced by gold deposits. Nat. Geosci., v.6, p.294-298.   DOI
62 Weir, R.H. and Kerrick, D.M. (1987) Mineralogic, fluid inclusion, and stable isotope studies of several gold mines in the Mother Lode, Tuolumne and Mariposa counties, California. Econ. Geol., v.82, p.328-344.   DOI
63 Caine, J.S., Bruhn, R.L. and Forster, C.B. (2010) Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada. J. Struct. Geol., v.32, p.1576-1589.   DOI
64 Woodcock, N.H., Dickson, J.A.D. and Tarasewicz, J.P.T. (2007) Transient permeability and reseal hardening in fault zones: evidence from dilation breccia textures. Geol. Soc. Spec. Publ., v.270, p.43-53.   DOI
65 Yang, S.J., Duuring, P. and Kim, Y.S. (2013) Structural genesis of the Eunsan and Moisan low-sulphidation epithermal Au-Ag deposits, Seongsan district, Southwest Korea. Miner. Depos., v.48, p.467-483.   DOI
66 Zhou, Y., Xu, D., Dong, G., Chi, G., Deng, T., Cai, J., Ning, J. and Wang, Z. (2021) The role of structural reactivation for gold mineralization in northeastern Hunan Province, South China. J. Struct. Geol., v.145, 104306.   DOI
67 Cox, S.F. (1995) Faulting processes at high fluid pressures: an example of fault valve behavior from the Wattle Gully Fault, Victoria, Australia. J. Geophys. Res. Solid Earth, v.100, p.12841-12859.   DOI
68 Cox, S.F. (2010) The application of failure mode diagrams for exploring the roles of fluid pressure and stress states in controlling styles of fracture-controlled permeability enhancement in faults and shear zones. Geofluids, v.10, p.217-233.   DOI
69 Cox, S.F., Knackstedt, M.A. and Braun, J. (2001) Principles of structural control on permeability and fluid flow in hydrothermal systems. Rev. Econ. Geol. v.14, p.1-24.   DOI
70 Frost, E., Dolan, J., Ratschbacher, L., Hacker, B. and Seward, G. (2011) Direct observation of fault zone structure at the brittle-ductile transition along the Salzach-Ennstal-Mariazell-Puchberg fault system, Austrian Alps. J. Geophys. Res. Solid Earth, v.116.
71 Hubbert, M.K. and Rubey, W.W. (1959) Role of fluid pressure in mechanics of overthrust faulting: I. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Geol. Soc. Am. Bull., v.70, p.115-166.   DOI
72 Etheridge, M.A., Wall, V.J. and Vernon, R.H. (1983) The role of the fluid phase during regional metamorphism and deformation. J. Metamorph. Geol., v.1, p205-226.   DOI
73 Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G. and Robert, F. (1998) Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev., v.13, p.7-27.   DOI
74 Gulyuz, N., Shipton, Z.K., Kuscu, I., Lord, R.A., Kaymakci, N., Gulyuz, E. and Gladwell, D.R. (2018) Repeated reactivation of clogged permeable pathways in epithermal gold deposits: Kestanelik epithermal vein system, NW Turkey. J. Geol. Soc. London, v.175, p.509-524.   DOI
75 Shelton, K.L., So, C.S. and Chang, J.S. (1988) Gold-rich mesothermal vein deposits of the Republic of Korea; geochemical studies of the Jungwon gold area. Econ. Geol., v.83, p.1221-1237.   DOI