• Title/Summary/Keyword: Relaxor

검색결과 109건 처리시간 0.023초

Effect of Nb Doping on the Dielectric and Strain Properties of Lead-free 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3 Ceramics

  • Han, Hyoung-Su;Hong, In-Ki;Kong, Young-Min;Lee, Jae-Shin;Jo, Wook
    • 한국세라믹학회지
    • /
    • 제53권2호
    • /
    • pp.145-149
    • /
    • 2016
  • $(Bi_{1/2}Na_{1/2})_{0.94}Ba_{0.06}(Ti_{1-x}Nb_x)O_3$ (BNBTxNb) ceramics were investigated in terms of the crystal structure as well as the ferroelectric, dielectric, and piezoelectric properties. While little change was observed in the microstructure except for a slight decrease in the average grain size, a significant change was noticed in the temperature dependence of dielectric and piezoelectric properties. It was shown that the property changes are closely related to the downward shift in the position of the ferroelectric-to-relaxor transition temperature with increasing amount of Nb doping. A special emphasis is put on the fact that Nb doping is so effective at decreasing the ferroelectric-to-relaxor transition temperature that even at no more than 2 at.% Nb addition, the transition temperature was already brought down slightly below room temperature, resulting in the birth of a large strain at 0.46 %, equivalent to $S_{max}/E_{max}=767pm/V$.

Relaxor Behaviors in xBaTiO3-(1-x)CoFe2O4 Materials

  • Dung, Cao Thi My;Thi, Nhu Hoa Tran;Ta, Kieu Hanh Thi;Tran, Vinh Cao;Nguyen, Bao Thu Le;Le, Van Hieu;Do, Phuong Anh;Dang, Anh Tuan;Ju, Heongkyu;Phan, Bach Thang
    • Journal of Magnetics
    • /
    • 제20권4호
    • /
    • pp.353-359
    • /
    • 2015
  • Dielectric properties of $xBaTiO_3-(1-x)CoFe_2O_4$ composite materials have been investigated. Dielectric properties of $BaTiO_3$, $CoFe_2O_4$ and $0.5BaTiO_3-0.5CoFe_2O_4$ samples show frequency dependence, which is classified as relaxor behavior with different relaxing degree. The relaxor behaviors were described using the modified Curier-Weiss and Vogel-Fulcher laws. Among three above samples, the $BaTiO_3$ sample has highest relaxing degree. Photoluminescence spectral indicated defects, which might in turn control relaxing degree.

완화형 강유전체 $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$계에서의 상전이 및 Relaxation 거동 (Phase Transformation and Dielectric Relaxation in $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ Relaxor Ferroelectrics)

  • 박재환
    • 한국세라믹학회지
    • /
    • 제38권10호
    • /
    • pp.953-957
    • /
    • 2001
  • 완화형 강유전체인 $Pb(Mg_{1/3}Nb_{2/3})O_3$계의 상전이 주파수의존성을 조사하기 위해 낮은 전계와 높은 전계 하에서 측정된 물성들을 1 Hz부터 100 kHz에 이르는 주파수 범위에서 비교 분석하였다. $-40{\sim}90^{\circ}C$의 상전이 온도범위에 걸쳐 1 V/mm의 낮은 전계에서 측정된 유전특성의 온도의존성을 구하였고, 수 kV/mm의 강전계 하에서 측정된 유전이력곡선의 기울기로부터 계산된 유전상수의 온도의존성 및 초전전류의 온도의존성을 검토하였다. 모든 실험적 결과와 Vogel-Fulcher 관계식은 비교적 잘 일치되었다. 본 연구를 통하여 유전완화현상은 약전계 조건 뿐 아니라 강전계 조건 하에서도 동일한 거동을 보이는 것을 확인할 수 있었다.

  • PDF

PMN계 완화형 강유전체에서의 압전물성 (Piezoelectric Properties in PMN-based Relaxor Ferroelectrics)

  • 박재환;박재관;김윤호;박순자
    • 한국재료학회지
    • /
    • 제9권3호
    • /
    • pp.240-243
    • /
    • 1999
  • 0.9PMN-0.1PT계의 압전물성을 상전이 온도를 포함하는 $-40^{\circ}C~$100^{\circ}C$의 넓은 온도범위에서 조사하였다. 압전물서의 측정을 위해 상전이 온도 이하인 $-40^{\circ}C$에서 시편을 분극처리를 한 후 승온하면서 공진반공진법에 의해 측정하였다. $0^{\circ}C$이하에서 압전체의 필요충분조건인 압전 spectrum이 선명하게 나타남을 통해서 상전이 온도보다 충분히 낮은 온도에서 0.9PMN-0.1PT가 압전체임을 확인하였다. 상전이온도인 $40^{\circ}C$보다 훨씬 높은 $90^{\circ}C$ 정도의 온도에서도 압전 spectrum이 관찰되어 있음을 통해서 0.9PMN-0.1PT 완화형 강유전체의 경우 상전이온도 이상에서도 전기기계 변환이 일어나고 있으며 강유전체인 압전체의 성질을 띠고 있다는 것을 확인하였다.

  • PDF

Modeling and numerical simulation of electrostrictive materials and structures

  • Pechstein, Astrid;Krommer, Michael;Humer, Alexander
    • Smart Structures and Systems
    • /
    • 제30권3호
    • /
    • pp.221-237
    • /
    • 2022
  • This paper is concerned with nonlinear modeling and efficient numerical simulation of electrostrictive materials and structures. Two types of such materials are considered: relaxor ferroelectric ceramics and electrostrictive polymers. For ceramics, a geometrically linear formulation is developed, whereas polymers are studied in a geometrically nonlinear regime. In the paper, we focus on constitutive modeling first. For the reversible constitutive response under consideration, we introduce the augmented Helmholtz free energy, which is composed of a purely elastic part, a dielectric part and an augmentation term. For the elastic part, we involve an additive decomposition of the strain tensor into an elastic strain and an electrostrictive eigenstrain, which depends on the polarization of the material. In the geometrically nonlinear case, a corresponding multiplicative decomposition of the deformation gradient tensor replaces the additive strain decomposition used in the geometrically linear formulation. For the dielectric part, we first introduce the internal energy, to which a Legendre transformation is applied to compute the free energy. The augmentation term accounts for the contribution from vacuum to the energy. In our formulation, the augmented free energy depends not only on the strain and the electric field, but also on the polarization and an internal polarization; the latter two are internal variables. With the constitutive framework established, a Finite Element implementation is briefly discussed. We use high-order elements for the discretization of the independent variables, which include also the internal variables and, in case the material is assumed incompressible, the hydrostatic pressure, which is introduced as a Lagrange multiplier. The elements are implemented in the open source code Netgen/NGSolve. Finally, example problems are solved for both, relaxor ferroelectric ceramics and electrostrictive polymers. We focus on thin plate-type structures to show the efficiency of the numerical scheme and its applicability to thin electrostrictive structures.

BaTiO3 첨가에 따른 Bi1/2Na1/2TiO3-SrTiO3 무연 압전 세라믹스의 전기적 특성 및 상전이 거동 연구 (Electrical Properties and Phase Transition Behavior of Lead-Free BaTiO3-Modified Bi1/2Na1/2TiO3-SrTiO3 Piezoelectric Ceramics)

  • 강유빈;박재영;무클리사 아이샤 데비타;즈엉 짱 안;안창원;김병우;한형수;이재신
    • 한국전기전자재료학회논문지
    • /
    • 제35권5호
    • /
    • pp.516-521
    • /
    • 2022
  • We investigated the microstructure, crystal structure, dielectric, and elecromechanical strain properties of lead-free BaTiO3 (BT)-modified (Bi1/2Na1/2)TiO3-SrTiO3 (BNT-ST) piezoelectric ceramics. Samples were prepared by a conventional ceramic processing route. Temperature dependent dielectric properties confirmed that a phase transition from a nonergodic relaxor to an ergodic relaxor was induced when the BT concentration reached 1.5 mol%, interestingly, where the average grain size reached a maximum value of 4.5 ㎛. At the same time, enhanced electromechanical strain (Smax/Emax = 600 pm/V) was obtained. It is suggested that the induced ferroelectric-relaxor phase transition by the BT modification is responsible for the enhancement of electromechanical strain in 1.5 mol% BT-modified BNT-ST ceramics.

강유전체 고분자의 음의 압전 물성 및 상공존경계(MPB)에 대한 고찰 (Perspective on Ferroelectric Polymers Presenting Negative Longitudinal Piezoelectric Coefficient and Morphotropic Phase Boundary)

  • 임성빈;부상돈;정창규
    • 한국전기전자재료학회논문지
    • /
    • 제35권6호
    • /
    • pp.523-546
    • /
    • 2022
  • Morphotropic phase boundary (MPB), which is a special boundary that separates two or multiple different phases in the phase diagram of some ferroelectric ceramics, is an important concept in identifying physics that includes piezoelectric responses. MPB, which had not been discovered in organic materials until recently, was discovered in poly(vinylidene fluoride-co-trifluoroethylene (P(VDF-TrFE)), resulting from a molecular approach. The piezoelectric coefficient of P(VDF-TrFE) in this MPB region was achieved up to -63.5 pC N-1, which is about two times as large as the conventional value of -30 pC N-1 of P(VDF-TrFE). An order-disorder arrangement greatly affects the rise of the piezoelectric effect and the ferroelectric, paraelectric and relaxor ferroelectric of P(VDF-TrFE), so the arrangement and shape of the polymer chain is important. In this review, we investigate the origin of negative longitudinal piezoelectric coefficients of piezoelectric polymers, which is definitely opposite to those of common piezoelectric ceramics. In addition to the mainly discussed issue about MPB behaviors of ferroelectric polymers, we also introduce the consideration about polymer chirality resulting in relaxor ferroelectric properties. When the physics of ferroelectric polymers is unveiled, we can improve the piezoelectric and pyroelectric properties of ferroelectric polymers and contribute to the development of next-generation sensor, energy, transducer and actuator applications.

Effects of High-Energy Ball Milling and Sintering Time on the Electric-Field-Induced Strain Properties of Lead-Free BNT-Based Ceramic Composites

  • Nga-Linh Vu;Nga-Linh Vu;Dae-Jun Heo;Thi Hinh Dinh;Chang Won Ahn;Chang Won Ahn;Hyoung-Su Han;Jae-Shin Lee
    • 한국전기전자재료학회논문지
    • /
    • 제36권5호
    • /
    • pp.505-512
    • /
    • 2023
  • This study investigated crystal structures, microstructures, and electric-field-induced strain (EFIS) properties of Bi-based lead-free ferroelectric/relaxor composites. Bi1/2Na0.82K0.18)1/2TiO3 (BNKT) as a ferroelectric material and 0.78Bi1/2(Na0.78K0.22)1/2TiO3-0.02LaFeO3 (BNKT2LF) as a relaxor material were synthesized using a conventional solid-state reaction method, and the resulting BNKT2LF powders were subjected to high-energy ball milling (HEBM) after calcination. As a result, HEBM proved a larger average grain size of sintered samples compared to conventional ball milling (CBM). In addition, the increased sintering time led to grain growth. Furthermore, HEBM treatment and sintering time demonstrated a significant effect on EFIS of BNKT/BNKT2LF composites. At 6 kV/mm, 0.35% of the maximum strain (Smax) was observed in the HEBM sample sintered for 12 h. The unipolar strain curves of CBM samples were almost linear, indicating almost no phase transitions, while HEBM samples displayed phase transitions at 5~6 kV/mm for all sintering time levels, showing the highest Smax/Emax value of 700 pm/V. These results indicated that HEBM treatment with a long sintering time might significantly enhance the electromechanical strain properties of BNT-based ceramics.