• Title/Summary/Keyword: Relaxor

Search Result 109, Processing Time 0.027 seconds

Effect of Nb Doping on the Dielectric and Strain Properties of Lead-free 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3 Ceramics

  • Han, Hyoung-Su;Hong, In-Ki;Kong, Young-Min;Lee, Jae-Shin;Jo, Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.145-149
    • /
    • 2016
  • $(Bi_{1/2}Na_{1/2})_{0.94}Ba_{0.06}(Ti_{1-x}Nb_x)O_3$ (BNBTxNb) ceramics were investigated in terms of the crystal structure as well as the ferroelectric, dielectric, and piezoelectric properties. While little change was observed in the microstructure except for a slight decrease in the average grain size, a significant change was noticed in the temperature dependence of dielectric and piezoelectric properties. It was shown that the property changes are closely related to the downward shift in the position of the ferroelectric-to-relaxor transition temperature with increasing amount of Nb doping. A special emphasis is put on the fact that Nb doping is so effective at decreasing the ferroelectric-to-relaxor transition temperature that even at no more than 2 at.% Nb addition, the transition temperature was already brought down slightly below room temperature, resulting in the birth of a large strain at 0.46 %, equivalent to $S_{max}/E_{max}=767pm/V$.

Relaxor Behaviors in xBaTiO3-(1-x)CoFe2O4 Materials

  • Dung, Cao Thi My;Thi, Nhu Hoa Tran;Ta, Kieu Hanh Thi;Tran, Vinh Cao;Nguyen, Bao Thu Le;Le, Van Hieu;Do, Phuong Anh;Dang, Anh Tuan;Ju, Heongkyu;Phan, Bach Thang
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.353-359
    • /
    • 2015
  • Dielectric properties of $xBaTiO_3-(1-x)CoFe_2O_4$ composite materials have been investigated. Dielectric properties of $BaTiO_3$, $CoFe_2O_4$ and $0.5BaTiO_3-0.5CoFe_2O_4$ samples show frequency dependence, which is classified as relaxor behavior with different relaxing degree. The relaxor behaviors were described using the modified Curier-Weiss and Vogel-Fulcher laws. Among three above samples, the $BaTiO_3$ sample has highest relaxing degree. Photoluminescence spectral indicated defects, which might in turn control relaxing degree.

Phase Transformation and Dielectric Relaxation in $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ Relaxor Ferroelectrics (완화형 강유전체 $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$계에서의 상전이 및 Relaxation 거동)

  • Park, Jae-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.953-957
    • /
    • 2001
  • To study various relaxation phenomena of $Pb(Mg_{1/3}Nb_{2/3})O_3$ relaxor ferroelectrics, weak electric-field properties as well as strong electric-field properties were investigated in the frequency range from 1 Hz to 100 kHz. The temperature dependence of the dielectric properties were measured under the low electric-field of 1 V/mm in the phase transition temperature range from $-40^{\circ}C$ to $90^{\circ}C$. The dielectric properties obtained from the slope of the dielectric hysteresis loop and the temperature dependence of the pyroelectric properties were also investigated. When fitting all the experimental data with the Vogel-Fulcher relation, experimental data were agreed with the equation closely. Thus, dielectric relaxations could be modeled by the Vogel-Fulcher relation not only for the low electric-field but also for the high electric-field.

  • PDF

Piezoelectric Properties in PMN-based Relaxor Ferroelectrics (PMN계 완화형 강유전체에서의 압전물성)

  • Park, Jae-Hwan;Park, Jae-Gwan;Kim, Yun-Ho;Park, Soon-Ja
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.240-243
    • /
    • 1999
  • Piezoelectric properties of O.9PMN-0.1PT relaxor ferroe1ectrics were investigated in the temperature range of $-40^{\circ}C~$100^{\circ}C$. After poled at $-40^{\circ}C$, electro-mechanical properties of the samples were measured by resonance antiresonance method. As the resonance behavior was shown in impedance spectrum obtained below $0^{\circ}C$, it can be c conduded that 0.9PMN-0.1PT is bona-fide ferroelectrics below the phase transition temperature. It is very noteworthy that electro-mechanical resonance occurs at the temperatures far above the phase transition temperature. It is coneluded that ferroelectricity in 0.9PMN-0.1PT relaxor were verified far above the phase transition temperature.

  • PDF

Modeling and numerical simulation of electrostrictive materials and structures

  • Pechstein, Astrid;Krommer, Michael;Humer, Alexander
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.221-237
    • /
    • 2022
  • This paper is concerned with nonlinear modeling and efficient numerical simulation of electrostrictive materials and structures. Two types of such materials are considered: relaxor ferroelectric ceramics and electrostrictive polymers. For ceramics, a geometrically linear formulation is developed, whereas polymers are studied in a geometrically nonlinear regime. In the paper, we focus on constitutive modeling first. For the reversible constitutive response under consideration, we introduce the augmented Helmholtz free energy, which is composed of a purely elastic part, a dielectric part and an augmentation term. For the elastic part, we involve an additive decomposition of the strain tensor into an elastic strain and an electrostrictive eigenstrain, which depends on the polarization of the material. In the geometrically nonlinear case, a corresponding multiplicative decomposition of the deformation gradient tensor replaces the additive strain decomposition used in the geometrically linear formulation. For the dielectric part, we first introduce the internal energy, to which a Legendre transformation is applied to compute the free energy. The augmentation term accounts for the contribution from vacuum to the energy. In our formulation, the augmented free energy depends not only on the strain and the electric field, but also on the polarization and an internal polarization; the latter two are internal variables. With the constitutive framework established, a Finite Element implementation is briefly discussed. We use high-order elements for the discretization of the independent variables, which include also the internal variables and, in case the material is assumed incompressible, the hydrostatic pressure, which is introduced as a Lagrange multiplier. The elements are implemented in the open source code Netgen/NGSolve. Finally, example problems are solved for both, relaxor ferroelectric ceramics and electrostrictive polymers. We focus on thin plate-type structures to show the efficiency of the numerical scheme and its applicability to thin electrostrictive structures.

Electrical Properties and Phase Transition Behavior of Lead-Free BaTiO3-Modified Bi1/2Na1/2TiO3-SrTiO3 Piezoelectric Ceramics (BaTiO3 첨가에 따른 Bi1/2Na1/2TiO3-SrTiO3 무연 압전 세라믹스의 전기적 특성 및 상전이 거동 연구)

  • Kang, Yubin;Park, Jae Young;Devita, Mukhllishah Aisyah;Duong, Trang An;Ahn, Chang Won;Kim, Byeong Woo;Han, Hyoung-Su;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.516-521
    • /
    • 2022
  • We investigated the microstructure, crystal structure, dielectric, and elecromechanical strain properties of lead-free BaTiO3 (BT)-modified (Bi1/2Na1/2)TiO3-SrTiO3 (BNT-ST) piezoelectric ceramics. Samples were prepared by a conventional ceramic processing route. Temperature dependent dielectric properties confirmed that a phase transition from a nonergodic relaxor to an ergodic relaxor was induced when the BT concentration reached 1.5 mol%, interestingly, where the average grain size reached a maximum value of 4.5 ㎛. At the same time, enhanced electromechanical strain (Smax/Emax = 600 pm/V) was obtained. It is suggested that the induced ferroelectric-relaxor phase transition by the BT modification is responsible for the enhancement of electromechanical strain in 1.5 mol% BT-modified BNT-ST ceramics.

Perspective on Ferroelectric Polymers Presenting Negative Longitudinal Piezoelectric Coefficient and Morphotropic Phase Boundary (강유전체 고분자의 음의 압전 물성 및 상공존경계(MPB)에 대한 고찰)

  • Im, Sungbin;Bu, Sang Don;Jeong, Chang Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.523-546
    • /
    • 2022
  • Morphotropic phase boundary (MPB), which is a special boundary that separates two or multiple different phases in the phase diagram of some ferroelectric ceramics, is an important concept in identifying physics that includes piezoelectric responses. MPB, which had not been discovered in organic materials until recently, was discovered in poly(vinylidene fluoride-co-trifluoroethylene (P(VDF-TrFE)), resulting from a molecular approach. The piezoelectric coefficient of P(VDF-TrFE) in this MPB region was achieved up to -63.5 pC N-1, which is about two times as large as the conventional value of -30 pC N-1 of P(VDF-TrFE). An order-disorder arrangement greatly affects the rise of the piezoelectric effect and the ferroelectric, paraelectric and relaxor ferroelectric of P(VDF-TrFE), so the arrangement and shape of the polymer chain is important. In this review, we investigate the origin of negative longitudinal piezoelectric coefficients of piezoelectric polymers, which is definitely opposite to those of common piezoelectric ceramics. In addition to the mainly discussed issue about MPB behaviors of ferroelectric polymers, we also introduce the consideration about polymer chirality resulting in relaxor ferroelectric properties. When the physics of ferroelectric polymers is unveiled, we can improve the piezoelectric and pyroelectric properties of ferroelectric polymers and contribute to the development of next-generation sensor, energy, transducer and actuator applications.

Effects of High-Energy Ball Milling and Sintering Time on the Electric-Field-Induced Strain Properties of Lead-Free BNT-Based Ceramic Composites

  • Nga-Linh Vu;Nga-Linh Vu;Dae-Jun Heo;Thi Hinh Dinh;Chang Won Ahn;Chang Won Ahn;Hyoung-Su Han;Jae-Shin Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.505-512
    • /
    • 2023
  • This study investigated crystal structures, microstructures, and electric-field-induced strain (EFIS) properties of Bi-based lead-free ferroelectric/relaxor composites. Bi1/2Na0.82K0.18)1/2TiO3 (BNKT) as a ferroelectric material and 0.78Bi1/2(Na0.78K0.22)1/2TiO3-0.02LaFeO3 (BNKT2LF) as a relaxor material were synthesized using a conventional solid-state reaction method, and the resulting BNKT2LF powders were subjected to high-energy ball milling (HEBM) after calcination. As a result, HEBM proved a larger average grain size of sintered samples compared to conventional ball milling (CBM). In addition, the increased sintering time led to grain growth. Furthermore, HEBM treatment and sintering time demonstrated a significant effect on EFIS of BNKT/BNKT2LF composites. At 6 kV/mm, 0.35% of the maximum strain (Smax) was observed in the HEBM sample sintered for 12 h. The unipolar strain curves of CBM samples were almost linear, indicating almost no phase transitions, while HEBM samples displayed phase transitions at 5~6 kV/mm for all sintering time levels, showing the highest Smax/Emax value of 700 pm/V. These results indicated that HEBM treatment with a long sintering time might significantly enhance the electromechanical strain properties of BNT-based ceramics.