Piezoelectric Properties in PMN-based Relaxor Ferroelectrics

PMN계 완화형 강유전체에서의 압전물성

  • Park, Jae-Hwan (Materials Science and Technoligy Division, Korea Institute of Science and Technology) ;
  • Park, Jae-Gwan (Materials Science and Technoligy Division, Korea Institute of Science and Technology) ;
  • Kim, Yun-Ho (Materials Science and Technoligy Division, Korea Institute of Science and Technology) ;
  • Park, Soon-Ja (School of Material Science, Seoul National University)
  • 박재환 (한국과학기술연구원 재료연구부) ;
  • 박재관 (한국과학기술연구원 재료연구부) ;
  • 김윤호 (한국과학기술연구원 재료연구부) ;
  • 박순자 (서울대학교 재료공학부)
  • Published : 1999.03.01

Abstract

Piezoelectric properties of O.9PMN-0.1PT relaxor ferroe1ectrics were investigated in the temperature range of $-40^{\circ}C~$100^{\circ}C$. After poled at $-40^{\circ}C$, electro-mechanical properties of the samples were measured by resonance antiresonance method. As the resonance behavior was shown in impedance spectrum obtained below $0^{\circ}C$, it can be c conduded that 0.9PMN-0.1PT is bona-fide ferroelectrics below the phase transition temperature. It is very noteworthy that electro-mechanical resonance occurs at the temperatures far above the phase transition temperature. It is coneluded that ferroelectricity in 0.9PMN-0.1PT relaxor were verified far above the phase transition temperature.

0.9PMN-0.1PT계의 압전물성을 상전이 온도를 포함하는 $-40^{\circ}C~$100^{\circ}C$의 넓은 온도범위에서 조사하였다. 압전물서의 측정을 위해 상전이 온도 이하인 $-40^{\circ}C$에서 시편을 분극처리를 한 후 승온하면서 공진반공진법에 의해 측정하였다. $0^{\circ}C$이하에서 압전체의 필요충분조건인 압전 spectrum이 선명하게 나타남을 통해서 상전이 온도보다 충분히 낮은 온도에서 0.9PMN-0.1PT가 압전체임을 확인하였다. 상전이온도인 $40^{\circ}C$보다 훨씬 높은 $90^{\circ}C$ 정도의 온도에서도 압전 spectrum이 관찰되어 있음을 통해서 0.9PMN-0.1PT 완화형 강유전체의 경우 상전이온도 이상에서도 전기기계 변환이 일어나고 있으며 강유전체인 압전체의 성질을 띠고 있다는 것을 확인하였다.

Keywords

References

  1. Am. Ceram. Soc. Bull. v.65 K.Uchino
  2. Piezoelectric/Electrostrictive Actuators K.Uchino
  3. Ferroelectrics v.41 S.Nomura;K.Uchino
  4. Am. Ceram. Soc. Bull. v.66 T.R.Shrout;A.Halliyal
  5. J. Am. Ceram. Soc. v.72 Q.Zhang;W.Pan;A.Bhalla;L.E.Cross
  6. J. Am. Ceram. Soc. v.79 no.2 J.H.Park;B.K.Kim;S.J.Park
  7. J. Appl. Phys. v.81 no.4 J.H.Park;K.S.Hong;S.J.Park
  8. J. Am. Ceram. Soc. v.75 S.M.Pilgrim;M.Massuda;J.D.Prodey;A.P.Ritter
  9. J. Am. Ceram. Soc. v.75 S.M.Pilgrim;M.Massuda;A.E.Sutherland
  10. Mater. Lett. v.8 S.W.Choi;T.R.Shrout;S.J.Jang;A.S.Bhalla
  11. Mater. Res. Bull. v.17 S.L.Swartz;T.R.Shrout
  12. J. Am. Ceram. Soc. v.67 S.L.Swartz;T.R.Shrout;W.A.Schulze;L.E.Cross
  13. Piezoelectric Ceramics B.Jaffe;W.R.Cook,Jr.;H.Jaffe