• Title/Summary/Keyword: Relaxed strain

Search Result 51, Processing Time 0.026 seconds

Elastoplastic Behavior and Creep Analysis of Solder in a FC-PBGA Package (플립 칩 패키지 솔더의 탄소성 거동과 크립 해석)

  • Choi, Nam-Jin;Lee, Bong-Hee;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.21-28
    • /
    • 2010
  • Creep behaviors of the solder balls in a flip chip package assembly during thermal cycling test is investigated.. A material models used in the finite element analysis are viscoplastic model introduced by Anand and creep model called partitioned model. Experiment of two temperature cycles using moir$\acute{e}$ interferometry is conducted to verify the reliability of material models for the analysis of thermo-mechanical behavior. Bending deformations of the assemblies and average strains of the solder balls due to temperature change and dwell time are investigated. The results show that time-dependent shear strain of solder by the partitioned model is in excellent agreement with those by moir$\acute{e}$ interferometry, while there is considerable difference between results by Anand model and experiment. In this paper, the partitioned model is employed for the time-dependent creep analysis of the FC-PBGA package. It is also shown that the thermo-mechanical stress becomes relaxed by creep behavior at high temperature during temperature cycles.

An Analytical Model for the Threshold Voltage of Short-Channel Double-Material-Gate (DMG) MOSFETs with a Strained-Silicon (s-Si) Channel on Silicon-Germanium (SiGe) Substrates

  • Bhushan, Shiv;Sarangi, Santunu;Gopi, Krishna Saramekala;Santra, Abirmoya;Dubey, Sarvesh;Tiwari, Pramod Kumar
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.367-380
    • /
    • 2013
  • In this paper, an analytical threshold voltage model is developed for a short-channel double-material-gate (DMG) strained-silicon (s-Si) on silicon-germanium ($Si_{1-X}Ge_X$) MOSFET structure. The proposed threshold voltage model is based on the so called virtual-cathode potential formulation. The virtual-cathode potential is taken as minimum channel potential along the transverse direction of the channel and is derived from two-dimensional (2D) potential distribution of channel region. The 2D channel potential is formulated by solving the 2D Poisson's equation with suitable boundary conditions in both the strained-Si layer and relaxed $Si_{1-X}Ge_X$ layer. The effects of a number of device parameters like the Ge mole fraction, Si film thickness and gate-length ratio have been considered on threshold voltage. Further, the drain induced barrier lowering (DIBL) has also been analyzed for gate-length ratio and amount of strain variations. The validity of the present 2D analytical model is verified with ATLAS$^{TM}$, a 2D device simulator from Silvaco Inc.

Optimization of multiple-quantum-well structures in 1.55.$\mu$ InGaAsP/InGaAsP SL-MQW DFB-LD for high-speed direct modulation (고속직접변조를 위한 1.55.$\mu$. InGaAsP/InGaAsP SL-MQW DFB-LD의 양자우물구조의 최적화)

  • 심종인;한백형
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.3
    • /
    • pp.60-73
    • /
    • 1997
  • By introducing a compressive-strained quanternary InGaAsP quantum-wells instead of a conventional ternary InGaAs quantum-wells in 1.55.mu.m DFB-LD, the lasing performances canb e improved and the problems caused by the thickness non-uniformity and the compositional abruptness among the hetero-interpaces canb e relaxed. In this paper, we investigated an iptimum InGaAsP/InGaAsP multiple-quantum-well(MQW) structure as an active layer in a direct-modulated 1.55.mu. DFB-LD from the view point of threshold current, chirping charcteristics, and resonance frequency. The optimum compressive-strained MQW structure was revealed as InGaAsP/InGaAsP structure with strain amount of about 1.2%, number of wells $N_{w}$ of 7, well width $L_{w}$ of 58.agns.. The threshold current density J of 500A/c $m^{2}$, the linewidth enhancement factor a of 1.8, and differential resonance frequency of d $f_{r}$/d(I-I)$^{1}$2/=2GHz/(mA)$^{1}$2/(atI=2 $I_{th}$) were expected in 1.55.mu.m .gamma./4-shifted DFB-LD with the cavity length of 400.mu.m long and kL value of 1.25. These values are considerably improved ones compared to those of 1.55um DFB-LD with InGaAs/InGaAsP MQW which have enhancement factor and the resonance frequence frequency by the detuning of lasing wavelength and gain-peak wavelength. It was found that the linewidth enhancement factor of 20% and differential resonance frequency of 35% without the degradation of the threshold current density could be enhanced in the range of -15nm~-20nm detuning which can be realized by controlling the thickness and Incomposition of InGaAsP well. well.and Incomposition of InGaAsP well. well.

  • PDF

MBE growth of topological insulator $Bi_2Se_3$ films on Si(111) substrate

  • Kim, Yong-Seung;Bansa, Namrata;Edrey, Eliav;Brahlek, Mathew;Horibe, Yoichi;Iida, Keiko;Tanimura, Makoto;Li, Guo-Hong;Feng, Tian;Lee, Hang-Dong;Gustafsson, Torgny;Andrei, Eva;Cheong, Sang-Wook;Oh, Seong-Shik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.59-59
    • /
    • 2011
  • We will report atomically sharp epitaxial growth of $Bi_2Se_3$ three-dimensional topological insulator films on Si(111) substrate with molecular beam epitaxy (MBE). It was achieved by employing two step growth temperatures to prevent any formation of second phase, like as $SiSe_2$ clusters, between $Bi_2Se_3$ and Si substrate at the early stage of growth. The growth rate was determined completely by Bi flux and the Bi:Se flux ratio was kept ~1:15. The second-phase-free atomically sharp interface was verified by RHEED, TEM and XRD. Based on the RHEED analysis, the lattice constant of $Bi_2Se_3$ relaxed to its bulk value during the first quintuple layer implying the absence of strain from the substrate. Single-crystalline XRD peaks of $Bi_2Se_3$ were observed in films as thin as 4 QL. TEM shows full epitaxial structure of $Bi_2Se_3$ film down to the first quintuple layer without any second phases. This growth method was used to grow high quality epitaxial $Bi_2Se_3$ films from 3 QL to 3600 QL. The magneto-transport properties of these thin films show a robust 2D surface state which is thickness independent.

  • PDF

Effects of Artificial and Natural Selection on Walking Behavior in Drosophila melanogaster (초파리의 보행행동에 관한 인위도태와 자연도태에 의한 유전적 효과)

  • 주종길;이현화
    • The Korean Journal of Zoology
    • /
    • v.26 no.2
    • /
    • pp.95-106
    • /
    • 1983
  • Selections for rapid and slow walking behavior were carried out with the populations, drived from Oregon-R and lethal free strain of Drosophila melanogaster. The behavior was measured by means of connected test-tube apparatus. The populations responded effectively to the artificial selection, and it reached the selection plateau after 7 generations. The realized heritability for the first 10 generations was estimated to be about $9\\sim14%$ for the rapid walking behavior, and those for slow walking behavior was about $11\\sim16%$. The results of hybridization analysis between selected populations at generations 8 and 10 indicated that some polygenes showing a slow walking behavior were partially dominant over polygenes controlled rapid trait. The populations selected for rapid and slow walking behavior were relaxed after 10 generations of selection. The response to natural selection of rapid population was completely returned to their neutral states after only 5 generations. Such phenomena would be explained by the genetic homeostasis resulted from an action of natural selection. However, the slow population did not make any difference from walking scores of their original artificial selection. It seems reasonable to assume that the slow walking behavior was possibly controlled by a major gene.

  • PDF

A MEIS Study on Ge Eppitaxial Growth on Si(001) with dynamically supplied Atomic Hydrogen

  • Ha, Yong-Ho;Kahng, Se-Jong;Kim, Se-Hun;Kuk, Young;Kim, Hyung-Kyung;Moon, Dae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.156-157
    • /
    • 1998
  • It is a diffcult and challenging pproblem to control the growth of eppitaxial films. Heteroeppitaxy is esppecially idfficult because of the lattice mismatch between sub-strate and depposited layers. This mismatch leads usually to a three dimensional(3D) island growth. But the use of surfactants such as As, Sb, and Bi can be beneficial in obtaining high quality heteroeppitaxial films. In this study medium energy ion scattering sppectroscoppy(MEIS) was used in order to reveal the growth mode of Ge on Si(001) and the strain of depposited film without and with dynamically supplied atomic hydrogen at the growth thempperature of 35$0^{\circ}C$. It was ppossible to control the growth mode from layer-by-layer followed by 3D island to layer-by-layer by controlling the hydrogen flux. In the absent of hydro-gen the film grows in the layer-by-layer mode within the critical thickness(about 3ML) and the 3D island formation is followed(Fig1). The 3D island formation is suppressed by introducing hydrogen resulting in layer-by-layer growth beyond the critical thickness(Fig2) We measured angular shift of blocking dipp in order to obtain the structural information on the thin films. In the ppressence of atomic hydrogen the blocking 야 is shifted toward higher scattering angle about 1。. That means the film is distorted tetragonally and strained therefore(Fig4) In other case the shift of blocking dipp at 3ML is almost same as pprevious case. But above the critical thickness the pposition of blocking dipp is similar to that of Si bulk(Fig3). It means the films is relaxed from the first layer. There is 4.2% lattice mismatch between Ge and Si. That mismatch results in about 2。 shift of blocking dipp. We measured about 1。 shift. This fact could be due to the intermixing of Ge and Si. This expperimental results are consistent with Vegard's law which says that the lattice constant of alloys is linear combination of the lattic constants of the ppure materials.

  • PDF

Characteristics of Early-Age Restrained Shrinkage and Tensile Creep of Ultra-High Performance Cementitious Composites (UHPCC) (초고성능 시멘트 복합체의 초기 재령 구속 수축 및 인장 크리프 특성)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.581-590
    • /
    • 2011
  • Since ultra-high performance cementitious composites (UHPCC) not only represents high early age shrinkage strain due to its low water-to-binder ratio (W/B) and high fineness admixture usage but also reduces the cross section of structure from the higher mechanical properties, it generally has more shrinkage cracks from the restraints of formwork and reinforcing bars. In this study, free and restrained shrinkage experiments were conducted to evaluate the suitability of incorporating both expansive admixture (EA) and shrinkage reducing agent (SRA). The test results indi-cated that approximately 40~44% of free shrinkage strain was decreased. Also, the results showed that 35% and 47% of residual tensile stresses were relieved by synergetic effect of SRA and EA, respectively. Residual tensile stresses from ringtest were relaxed by approximately 61% and 64% of elastic shrinkage stresses due to SRA and EA, respectively, because of the tensile creep effect. Therefore, the creep effect should be considered to precisely estimate the restrained shrinkage behavior of concrete structures. The degree of restraint of UHPCC was approximately in the range of 0.78~0.85. The addition of combined EA and SRA showed minute influence on the degree of restraint. However, the effect decreased when thicker concrete ring was used. Tensile creep strains were measured and compared to the predicted values from 4-parametric prediction model considering time dependent restrained forces.

Applicability of Continuous Process Using Saturated and Superheated Steam for Boxed Heart Square Timber Drying (대단면 수심정각재 건조를 위한 포화-과열증기 연속 건조 공정의 이용가능성 평가)

  • PARK, Yonggun;CHUNG, Hyunwoo;KIM, Hyunbin;YEO, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.121-135
    • /
    • 2020
  • This study aims to evaluate applicability for the continuous drying process using saturated and superheated steam for large-square timber. During drying of the boxed heart square timber, changes in moisture content were examined through the slices of the surface, inner and core layers. The results showed that there was a large moisture content difference between the surface and inner layers during saturated steam drying and between the inner and core layers during superheated steam drying. However, despite the moisture content difference between the layers, no surface check occurred, and an internal check occurred only near the pith or juvenile parts of the wood. The maximum value of the drying stress of the dried larch boxed heart square timber, calculated from the elastic strain of the slice and the tangential elastic modulus of the larch, was 1.30 MPa. The tangential tensile strength of the larch was estimated at 5.21 MPa under temperature and moisture content conditions when drying stress was at a maximum. That is, in the continuous drying process, the saturated and superheated steam did not generate a check in the surface because the drying stress of the wood did not exceed the tangential tensile strength. In further studies, the superheated steam drying conditions will need to be relaxed to suppress the occurrence of internal checks. Such studies would make the continuous drying process using saturated and superheated steam available for the drying of large-square timber.

Interface structure and anisotropic strain relaxation of nonpolar a-GaN on r-sapphire

  • Gong, Bo-Hyeon;Jo, Hyeong-Gyun;Song, Geun-Man;Yun, Dae-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.31-31
    • /
    • 2010
  • The growth of the high-quality GaN epilayers is of significant technological importance because of their commercializedoptoelectronic applications as high-brightness light-emitting diodes (LEDs) and laser diodes (LDs) in the visible and ultraviolet spectral range. The GaN-based heterostructural epilayers have the polar c-axis of the hexagonal structure perpendicular to the interfaces of the active layers. The Ga and N atoms in the c-GaN are alternatively stacked along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs, the stress applied along the same axis contributes topiezoelectric polarization, and thus the total polarization is determined as the sum of spontaneous and piezoelectric polarizations. The total polarization in the c-GaN heterolayers, which can generate internal fields and spatial separation of the electron and hole wave functions and consequently a decrease of efficiency and peak shift. One of the possible solutions to eliminate these undesirable effects is to grow GaN-based epilayers in nonpolar orientations. The polarization effects in the GaN are eliminated by growing the films along the nonpolar [$11\bar{2}0$] ($\alpha$-GaN) or [$1\bar{1}00$] (m-GaN) orientation. Although the use of the nonpolar epilayers in wurtzite structure clearly removes the polarization matters, however, it induces another problem related to the formation of a high density of planar defects. The large lattice mismatch between sapphiresubstrates and GaN layers leads to a high density of defects (dislocations and stacking faults). The dominant defects observed in the GaN epilayers with wurtzite structure are one-dimensional (1D) dislocations and two-dimensional (2D) stacking faults. In particular, the 1D threading dislocations in the c-GaN are generated from the film/substrate interface due to their large lattice and thermal coefficient mismatch. However, because the c-GaN epilayers were grown along the normal direction to the basal slip planes, the generation of basal stacking faults (BSFs) is localized on the c-plane and the generated BSFs did not propagate into the surface during the growth. Thus, the primary defects in the c-GaN epilayers are 1D threading dislocations. Occasionally, the particular planar defects such as prismatic stacking faults (PSFs) and inversion domain boundaries are observed. However, since the basal slip planes in the $\alpha$-GaN are parallel to the growth direction unlike c-GaN, the BSFs with lower formation energy can be easily formed along the growth direction, where the BSFs propagate straightly into the surface. Consequently, the lattice mismatch between film and substrate in $\alpha$-GaN epilayers is mainly relaxed through the formation of BSFs. These 2D planar defects are placed along only one direction in the cross-sectional view. Thus, the nonpolar $\alpha$-GaN films have different atomic arrangements along the two orthogonal directions ($[0001]_{GaN}$ and $[\bar{1}100]_{GaN}$ axes) on the $\alpha$-plane, which are expected to induce anisotropic biaxial strain. In this study, the anisotropic strain relaxation behaviors in the nonpolar $\alpha$-GaN epilayers grown on ($1\bar{1}02$) r-plane sapphire substrates by metalorganic chemical vapor deposition (MOCVO) were investigated, and the formation mechanism of the abnormal zigzag shape PSFs was discussed using high-resolution transmission electron microscope (HRTEM).

  • PDF

Review of Structural Design Provisions of Rectangular Concrete Filled Tubular Columns (각형 콘크리트충전 강관기둥 부재의 구조설계기준 비교연구)

  • Lee, Cheol Ho;Kang, Ki Yong;Kim, Sung Yong;Koo, Cheol Hoe
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.389-398
    • /
    • 2013
  • The structural provisions of rectangular CFT (concrete-filled tubular) columns in the 2005/2010 AISC Specification, ACI 318-08, and EC4 were comparatively analyzed as a preliminary study for establishing the unified standards for composite structures. The provisions analyzed included those related to the nominal strength, the effect of confinement, plate slenderness, effective flexural stiffness, and the material strength limitations. Small or large difference can be found among the provisions of AISC, ACI, and EC4. Generally, the 2010 AISC Specification provides the revised provisions which reflect up-to-date test results and tries to minimize the conflict with the ACI provisions. For example, the 2010 AISC Specification introduced a more finely divided plate slenderness limits for CFT columns. In seismic applications, the plate slenderness limits required for highly and moderately ductile CFT columns were separately defined. However, the upper cap limitations on material strengths in both the AISC and EC4 provisions are too restrictive and need to be relaxed considering the high-strength material test database currently available. This study found that no provisions reviewed in this paper provide a generally satisfactory method for predicting the P-M interaction strength of CFT columns under various material combinations. It is also emphasized that a practical constitutive model, which can reasonably reflect the stress-strain characteristics of confined concrete of rectangular CFT columns, is urgently needed for a reliable prediction of the P-M interaction strength.