TF3-004

MBE growth of topological insulator Bi₂Se₃ films on Si(111) substrate

Yong Seung Kim^{1,2}, Namrata Bansal², Eliav Edrey², Mathew Brahlek², Yoichi Horibe², Keiko Iida², Makoto Tanimura², Guo-Hong Li², Tian Feng², Hang-Dong Lee², Torgny Gustafsson², Eva Andrei², Sang-Wook Cheong², Seongshik Oh²

¹Sejong University, ²Rutgers University

We will report atomically sharp epitaxial growth of Bi_2Se_3 three-dimensional topological insulator films on Si(111) substrate with molecular beam epitaxy (MBE). It was achieved by employing two step growth temperatures to prevent any formation of second phase, like as $SiSe_2$ clusters, between Bi_2Se_3 and Si substrate at the early stage of growth. The growth rate was determined completely by Si flux and the Si:Se flux ratio was kept $\sim 1:15$. The second-phase-free atomically sharp interface was verified by RHEED, TEM and XRD. Based on the RHEED analysis, the lattice constant of Si_2Se_3 relaxed to its bulk value during the first quintuple layer implying the absence of strain from the substrate. Single-crystalline XRD peaks of Si_2Se_3 were observed in films as thin as 4 QL. TEM shows full epitaxial structure of Si_2Se_3 film down to the first quintuple layer without any second phases. This growth method was used to grow high quality epitaxial Si_2Se_3 films from 3 QL to 3600 QL. The magneto-transport properties of these thin films show a robust 2D surface state which is thickness independent.

Keywords: Topological Insulator, Bi₂Se₃, MBE