• Title/Summary/Keyword: Relative Coordinate

Search Result 204, Processing Time 0.026 seconds

Robot performance test and calibration systme (로보트 성능측정 및 Calibration 시스템)

  • 김문상;유형석;장현상;허재범
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.596-601
    • /
    • 1990
  • When using robot manipulator to carry out autonomous tasks, the positioning accuracy of the robot manipulator relative to a reference coordinate frame is of greate importance. The task program, which is generated by off-line CAD-system and used in actual robot positioning, may cause serious amount of the absolute positioning error of the robot manipulator. In this study, a robot performance test and calibration algorithms are proposed in order to improve the absolute positioning accuracy of the robot end effector. Experiments were also carried out by utilizing the HYUNDAI Robot AE 7601 and KIM2-Tester, a three dimensional measurement system, which is developed in Robotics & Fluid Power Control Lab. at Korea Institute of Science and Technology.

  • PDF

Reduction of Temporal Image Sticking in AC Plasma Display Panels through the Use of High He Contents

  • Park, Choon-Sang;Kim, Sun-Ho;Kim, Jae-Hyun;Tae, Heung-Sik
    • Journal of Information Display
    • /
    • v.10 no.4
    • /
    • pp.195-201
    • /
    • 2009
  • The temporal dark- and bright-image sticking phenomena were examined relative to the He contents under 11% Xe content in the 50-in HD and FHD AC-PDPs with a ternary gas mixture (Xe-He-Ne). To compare the temporal dark- and bright-image sticking phenomena under various He contents, the differences in the disappearing time, display luminance, perceived luminance, infrared emission, color coordinate, color temperature, and discharge current before and after discharge were measured under 0, 35, 50, and 70% He contents. It was found that temporal dark- and bright-image sticking were reduced in proportion to the increase in He %. Thus, a high He content contributes to the reduction of temporal dark- and bright-image sticking.

Modeling and Simulation of Aircraft Motion on the Ground: Part I. Derivation of Equations of Motion

  • Ro, Kapseong;Lee, Haechang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.28-43
    • /
    • 2001
  • Developed in these two series of paper is a complex dynamic model representing the motion of aircraft on the ground and a computer program for numerical simulation. The first part of paper presents the theoretical derivation of equations of motion of the landing gear system based on the physical principle. Developed model is 'structured' in the sense that the undercarriage system is regarded as an assembly of strut, tire, and wheel, where each component is modeled by a separate module. These modules are linked with two external modules-the aircraft and the runway characteristics-to carry out dynamic analysis and numerical simulation of the aircraft motion on the ground. Three sets of coordinate system associated with strut, wheel/tire and runway are defined, and external loads to each component and response characteristics are examined. Lagrangian formulation is used to derive the undercarriage equations of motion relative to the moving aircraft, and the resultant forces and moments from the undercarriage are transformed to aircraft body axes.

  • PDF

Quantitative analysis for evaluating the laser therapy effects of the skin pigmented lesions (피부 색소 질환의 치료 효과 판정을 위한 정량적 분석)

  • Kim, S.C.;Rah, D.K.;Kim, D.W.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.309-310
    • /
    • 1998
  • Visual observation and subjective assessments lack the objective evaluation of laser therapy effects of the epidermal pigmented lesions. In this study, we proposed the two methods; One is CIE(Commission International d'Eclairage) $L^*,\;a^*,\;b^*$ coordinate system($L^*$ : brightness, $a^*$ : red(+) $\sim$green(-) content, $b^*$ : yellow(+) $\sim$blue(-) content), and the other is the relative color difference measurement. And we applied these two methods for quantitative evaluation of the laser therapy effects.

  • PDF

A Study on the Pattern Recognition of Hole Defect using Neural Networks (신경회로망을 이용한 원공 결함 패턴 인식에 관한 연구)

  • 이동우;홍순혁;조석수;주원식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.146-153
    • /
    • 2003
  • Ultrasonic inspection of defects has been focused on the existence of defect in structural material and need has much time and expenses in inspecting all the coordinates (x, y) on material surface. Neural networks can have an application to coordinates (x, y) of defects by multi-point inspection method. Ultrasonic inspection modeling is optimized by neural networks Neural networks has trained training example of absolute and relative coordinate of defects, and defect pattern. This method can predict coordinates (x, y) of defects within engineering estimated mean error $\psi$.

RANS Simulation of a Tip-Leakage Vortex on a Ducted Marine Propulsor

  • Kim, Jin;Eric Peterson;Frederick Stern
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.1
    • /
    • pp.10-30
    • /
    • 2004
  • High-fidelity RANS simulations are presented for a ducted marine propulsor, including verification & validation (V&V) using available experimental fluid dynamics (EFD) data. CFDSHIP-IOWA is used with $\textsc{k}-\omega$ turbulence model and extensions for relative rotating coordinate system and Chimera overset grids. The mesh interpolation code PEGASUS is used for the exchange of the flow information between the overset grids. Intervals V&V for thrust, torque, and profile averaged radial velocity just downstream of rotor tip are reasonable in comparison with previous results. Flow pattern displays interaction and merging of tip-leakage and trailing edge vortices. In interaction region, multiple peaks and vorticity are smaller, whereas in merging region, better agreement with EFD. Tip-leakage vortex core position, size, circulation, and cavitation patterns for $\sigma=5$ also show a good agreement with EFD, although vortex core size is larger and circulation in interaction region is smaller.

Kinematic Design Sensitivity Analysis of Suspension systems Using Direct differentiation (직접미분법을 이용한 현가장치의 기구학적 민감도해석)

  • 민현기;탁태오;이장무
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.38-48
    • /
    • 1997
  • A method for performing kinematic design sensitivity analysis of vehicle suspension systems is presented. For modeling of vehicle suspensions, the multibody dynamic formulation is adopted, where suspensions are assumed as combination of rigid bodies and ideal frictionless joints. In a relative joint coordinate setting, kinematic constraint equations are obtained by imposing cut-joints that transform closed-loop shape suspension systems into open-loop systems. By directly differentiating the constraint equations with respect to kinematic design variables, such as length of bodies, notion axis, etc., sensitivity equations are derived. By solving the sensitivity equations, sensitivity of static design factors that can be used for design improvement, can be obtained. The validity and usefulness of the method are demonstrated through an example where kinematic sensitivity analysis of a MacPherson strut suspension of performed.

  • PDF

An Experimental Study of the Modified Chemical Vapor Deposition Process -Temperature Distribution and Particle Deposition Measurements- (수정된 화학증착(MCVD)에 관한 실험적 연구 - 온도분포와 입자부착 측정)

  • 조재걸;최만수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3057-3065
    • /
    • 1994
  • An experimental study has been made for heat transfer and particle deposition during the Modified Chemical Vapor Deposition process which is currently utilized to manufacture high quality optical waveguides. The distributions of tube wall temperatures, rates and efficiencies of particle deposition were measured. Results indicate that the temperature distributions of the tube wall in the axial direction yield the quasi-steady form in which temperature distributions fit in one curve if the relative distance from the moving torch is used as an axial coordinate. Due to the repeated heatings from the traversing torch, the wall temperatures are shown to reach the minimum ahead of torch and it is shown that the two torch formulation suggested by Park and Choi is valid to predict this minimum temperature. Measured wall temperatures, particle deposition efficiencies and tapered entry length are compared with the previous modelling results and shown to be in agreement.

Sliding Mode Control of Three-Phase Four-Leg Inverters via State Feedback

  • Yang, Long-Yue;Liu, Jian-Hua;Wang, Chong-Lin;Du, Gui-Fu
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1028-1037
    • /
    • 2014
  • To optimize controller design and improve static and dynamic performances of three-phase four-leg inverter systems, a compound control method that combines state feedback and quasi-sliding mode variable structure control is proposed. The linear coordinate change matrix and the state variable feedback equations are derived based on the mathematical model of three-phase four-leg inverters. Based on system relative degrees, sliding surfaces and quasi-sliding mode controllers are designed for converted linear systems. This control method exhibits the advantages of both state feedback and sliding mode control. The proposed controllers provide flexible dynamic control response and excellent stable control performance with chattering suppression. The feasibility of the proposed strategy is verified by conducting simulations and experiments.

Inverse Dynamic Analysis of Mechanical Systems Using the Velocity Transformation Technique (속도변환기법을 이용한 기계시스템의 역동학적 해석)

  • Lee, Byeong-Hun;Yang, Jin-Saeng;Jeon, U-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3741-3747
    • /
    • 1996
  • This paper presents a method for the inverse dynamic anlaysis of mechanical systems. Actuating forces(or torques) depending on the driving constraints are analyzed in the relative coordinate space using the velocity transformation technique. A systematic method to compose the inverse velocity transformation matrix, which is used to determine the joint reaction forces, is proposed. Two examples are taken to verify the method developed here.