• Title/Summary/Keyword: Relative Bearing

Search Result 330, Processing Time 0.031 seconds

Relationships of Loading Rates and Bearing Capacities on Intermediate Soils (재하속도를 이용한 중간토의 지지력 평가)

  • 박중배
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.101-114
    • /
    • 1996
  • In this study, the characteristics of bearing capacity and deformation of intermediate soils are investigated through centrifuge tests. The experimental parameters are footing width, initial stress condition of soils and relative loading rate defined relationship of loading rate and permeability of soils. It is examined that loading rate influences on the bearing capacities and deformations. Based on the test results, some problem of existing specification are introduced in the view of related loading rates and load intensities. Especially it is showed that load intensities magnitude rlre reversed in the same settlement ratio(s/B(%)), due to partial drained effect as well as loading rates in undrained con dition based on the excess pore pressure and deformations measured under loading.

  • PDF

Analysis of Correlation among Various Compaction Evaluation Methods for Estimating of the Bearing Capacity on Subgrades (노상토의 지지력 평가를 위한 다짐평가기법의 상관성 분석)

  • Lee, Joonyong;Jeoung, Jae-Hyeung;Choi, Changho;Kim, Jin-Young;Jin, Hyunwoo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.45-58
    • /
    • 2015
  • Even though the plate bearing test (PBT) to evaluate the load baring capacity and the field density test to evaluate the relative density are mainly used for quality control of soil compaction in Korea, use of the dynamic cone penetrometer test (DCPT) and the dynamic plate bearing test (DPBT) considering economic feasibility, rapidity, and suitability for field conditions increase to use for quality control of soil compaction. In this study, bearing capacity and relative density of subgrade with thickness of 20 cm, 30 cm, and 40 cm are estimated using PBT, DCPT, DPBT and field density test in three field compaction tests, and the relationship among various compaction evaluation methods is analyzed and discussed.

Study on the Characteristics of the Upper Pad Fluttering in a Large Tilting Pad Journal Bearing Using a Steam Turbine (증기터빈용 대형 틸팅패드 저어널베어링의 상부패드 Fluttering 특성 연구)

  • Yang, Seong-Heon;Park, Heui-Joo;Park, Cheol-Hyun;Kim, Chaesil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.399.1-399
    • /
    • 2002
  • This paper describes the fluttering characteristics of the upper pad in a tilting pad journal bearing(6-pad, LOP type) using a steam turbine. In order to investigate the phenomena of the pad fluttering experimentally, the absolute vibration of the upper pads, the relative vibration between the bearing and the shaft and the circumferential distribution of the film thickness are measured under the different values of oil supply flow rate, shaft speed and bearing load. (omitted)

  • PDF

Analysis of Dynamic Characteristics of a HDD Spindle System Supported by Ball Bearing Due to Temperature Variation (온도 변화에 따른 HDD 회전축계 동특성 해석)

  • 김동균;장건희;한재혁;김철순
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.10
    • /
    • pp.805-812
    • /
    • 2003
  • This paper presents a method to investigate the characteristics of a ball bearing and the dynamics of a HDD spindle system due to temperature variation. Finite element model is developed for the rotating and stationary parts of a HDD spindle system separately to determine their thermal deformations by using ANSYS, a finite element program. Then, the relative position of the rotating part with respect to the stationary part is determined by solving the equilibrium equation of the contact force between upper and lower ball bearings. The validity of the proposed method is verified by comparing the theoretical natural frequencies of a HDD spindle system with the experimental ones before and after temperature variation. It shows that the elevated temperature results in the increase of contact angle and the decrease of bearing deformation, contact force and bearing stiffness, which result in the decrease of the natural frequencies of a HDD spindle system.

Analysis of Dynamic Characteristics of a HDD Spindle System Supported by Ball Bearing Due to Temperature Variation (온도 변화에 따른 HDD 회전축계 동특성 해석)

  • 김동균;장건희;한재혁;김철순
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.578-584
    • /
    • 2003
  • This paper presents a method to investigate the characteristics of a ball bearing and the dynamics of a HDD spindle system due to temperature variation. Finite element model is developed fer the rotating and stationary parts of a HDD spindle system separately to determine their thermal deformations by using ANSYS, a finite element program. Then, the relative position of the rotating part with respect to the stationary part is determined by solving the equilibrium equation of the contact force between upper and lower ball bearings. The validity of the proposed method is verified by comparing the theoretical natural frequencies of a HDD spindle system with the experimental ones before and after temperature variation. It shows that the elevated temperature results in the increase of contact angle and the decrease of bearing deformation, contact force and bearing stiffness, which result in the decrease of the natural frequencies of a HDD spindle system.

  • PDF

OPERATION OF TILTING 5-PADS proceeding BEARING AT DIFFERENT GEOMETRIC PARAMETERS OF PADS

  • Strzelecki, S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.99-100
    • /
    • 2002
  • Radial, tilting-pad proceeding bearings are applied in high speed rotating machines operating at stable small and mean loads and the peripheral speeds of proceeding reaching 150 m/s. The operation of bearing can be determined by static characteristics including the oil film pressure, temperature and viscosity distributions, minimum oil film thickness, load capacity, power loss, oil flow. The operation of 5-lobe tilted-pad proceeding bearing has been introduced at the assumption of adiabatic oil film. The oil film pressure, temperature and viscosity distributions habe received by iterative solution of the Reynolds', energy and viscosity equations. The resulting oil film force, minimum oil film thickness, power loss. oil flow, maximum oil film pressure, maximum temperature were computed for different sets of bearing geometric parameters as: bearing length to diameter ratio, pad angular length and width as well as pad relative clearance.

  • PDF

Critical setback distance for a footing resting on slopes under seismic loading

  • Shukla, Rajesh Prasad;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1193-1205
    • /
    • 2018
  • A footing located on slopes possess relatively lower bearing capacity as compared to the footing located on the level ground. The bearing capacity further reduces under seismic loading. The adverse effect of slope inclination and seismic loading on bearing capacity can be minimized by proving sufficient setback distance. Though few earlier studies considered setback distance in their analysis, the range of considered setback distance was very narrow. No study has explored the critical setback distance. An attempt has been made in the present study to comprehensively investigate the effect of setback distance on footing under seismic loading conditions. The pseudo-static method has been incorporated to study the influence of seismic loading. The rate of decrease in seismic bearing capacity with slope inclination become more evident with the increase in embedment depth of footing and angle of shearing resistance of soil. The increase in bearing capacity with setback distance relative to level ground reduces with slope inclination, soil density, embedment depth of footing and seismic acceleration. The critical value of setback distance is found to increase with slope inclination, embedment depth of footing and density of soil. The critical setback distance in seismic case is found to be more than those observed in the static case. The failure mechanisms of footing under seismic loading is presented in detail. The statistical analysis was also performed to develop three equations to predict the critical setback distance, seismic bearing capacity factor ($N_{{\gamma}qs}$) and change in seismic bearing capacity (BCR) with slope geometry, footing depth and seismic loading.

Experimental Study of Driving Load Conditions for the Wheel Bearing Hub Unit of Passenger Car (승용차용 Wheel Bearing Hub Unit 설계를 위한 주행 하중조건의 실험적 연구)

  • 김기훈;유영면;임종순
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.166-173
    • /
    • 2002
  • The wheel bearing hub unit is developed type of wheel bearing unified with the hub parts. It has advantage of reducing the weight and the number of components. And, it also improves uniformity of manufacturing quality, In order to design the wheel bearing hub units, many techniques are used such as load analysis, structure analysis and bearing characteristics analysis and so forth. These techniques need highly accurate load conditions founded on service conditions. In this study, to design the wheel bearing hub units used widespread in passenger cars, the service load was measured through driving tests on the public roads and in the special events. The public roads are classified into highway, intercity road, rural road, urban road, and unpaved road so as to know what the characteristics of the road loads are. The results of the tests showed that the wheel force was relative to the lateral acceleration, and also could be calculated from the lateral acceleration. The lateral acceleration was measured from 0.0G to 0.6G in general driving on the public roads, with different distributions in each road type. In special events, the maximum lateral acceleration was measured from 0.8G to 1.3G.

Effects of Soil Conditions on the Behavior of Open -Ended Steel Pipe Pile (지반조건의 변화가 개단강관말뚝의 거동에 미치는 영향)

  • Baek, Gyu-Ho;Lee, Jong-Seop;Lee, Seung-Rae
    • Geotechnical Engineering
    • /
    • v.9 no.3
    • /
    • pp.23-34
    • /
    • 1993
  • Model pile teats, using large calibration chamber in which the stress state and the relative density can be controlled, were performed in order to study on the effect of soil condition on the behavior of open-ended steel pipe pile. The model pipe pile was made up of two pipes to separately measure each component of bearing capacity of open -ended steel pipe pile. According to the tests results, pile plugging and driving resistance of the pile installed in sand were primarily dependent on the horizontal stress and the relative density. Plug bearing capacity, outside skin fricition and total bearing capacity were also mainly dependent on the horizontal stress and relative density. Moreover, the ratio of the horizontal stress acting on the outside wall of open -ended pipe pile after installation to the original horizontal stress was not nearly affected by original value of horizontal stress. It is bigger than one in the case of dense deposit, equal to one for medium deposit, and smaller than one for very loose deposit. It seems to be mainly dependent on the relative density for a given soil.

  • PDF