• 제목/요약/키워드: Related Keywords

검색결과 952건 처리시간 0.025초

네트워크 분석을 통한 대학생 인성 관련 연구의 동향 분석 (Trend Analysis of Research Related to Personality of University Students Through Network Analysis)

  • 김세경
    • 한국콘텐츠학회논문지
    • /
    • 제21권12호
    • /
    • pp.47-56
    • /
    • 2021
  • 본 연구는 네트워크 분석을 활용하여 대학생 인성 관련 연구의 동향을 파악하고 향후 연구 방향의 시사점을 제공하는데 그 목적이 있다. 이러한 연구목적을 위해 국내 학술지에 게재된 대학생 인성 관련 논문 194편을 대상으로 하였다. 연구결과를 정리하면 다음과 같다. 첫째, 대학생 인성 관련 연구는 2004년부터 발표되기 시작하여 2012년에 소폭 상승하였고, 2015년부터 상승곡선을 이어가다 2017년에 정점을 찍은 후, 하향추세인 것으로 확인된다. 둘째, 연결 중심성과 매개 중심성 분석에서 공통적으로 가장 높은 중심성을 가진 핵심 키워드는 '사회'와 '함양'이었다. 셋째, 1기(2004년-2010년)에는 개인적 차원과 인성의 인지적인 측면의 키워드, 2기(2011년-2015년)에는 사회적인 차원과 인성의 정서적인 측면의 키워드, 3기(2016년-2020년)에는 사회적인 차원과 인성의 인지·정서·행동적인 측면의 키워드가 핵심적이었다. 넷째, 토픽모델링 분석결과, 능력, 생활, 대인, 만족, 적응의 키워드로 이루어진 토픽 2와 역량, 도덕, 시민, 사회, 실천으로 이루어진 토픽 1이 가장 높은 비중을 차지하였다. 다섯째, 1기에는 토픽 4 단독, 2기에는 토픽 1과 토픽 2의 순으로, 3기에는 토픽 2와 토픽 1의 순으로 높은 비중을 차지하는 것으로 나타났다. 본 연구는 대학생 인성 관련 연구에 유용한 근거자료가 될 것이다.

모바일 결제 서비스에 대한 미래신호 예측 - 중국시장을 대상으로 - (Exploring Future Signals for Mobile Payment Services - A Case of Chinese Market -)

  • 현빈;백승익
    • 서비스연구
    • /
    • 제13권1호
    • /
    • pp.96-107
    • /
    • 2023
  • 본 연구에서는 모바일 결제 서비스 이용률이 세계에서 가장 높은 중국 이용자들을 대상으로 어떤 이슈에 관심이 있는지를 미래신호 예측 방법론을 이용하여 예측하여 보았다. 이를 위하여 중국의 SNS 사이트로부터 모바일 결제와 연관된 텍스트 데이터를 수집한 후, 문장에서 추출한 키워드들을 키워드 등장 지도 (KEM: Keyword Emergence Map)와 키워드 이슈 지도 (KIM: Keyword Issue Map)를 이용하여 강신호, 약신호, 잠재신호, 그리고 강하지만 증가율이 낮은 신호로 분류하였다. 한 걸음 더 나아가서 본 연구에서는 4가지 종류의 신호를 구체적으로 이해하기 위해서 각 신호와 연관된 텍스트를 추가적으로 정성적인 분석을 실시하였다. 그 결과, 현재 뿐만 아니라 본 연구 기간 동안 키워드 출현 빈도가 빠르게 성장하고 있는 강신호에는 버스, 지하철, 가계부와 같이 중국인들의 일상생활과 관련된 키워드가 많이 포함되어 있음을 발견하였고, 현재에는 자주 등장하지만 강신호와는 달리 증가율이 낮은 신호에는 홍바오 (현금결제), 은행카드와 같이 현금 결제를 대체할 수 있는 다양한 서비스가 언급되었음을 발견하였다. 다른 신호에 비하여 출현 빈도가 저조한 약신호와 잠재신호에는 서비스 규정 변화나 이벤트와 연관된 키워드들이 포함되었다. 본 연구 결과를 통하여 모바일 결제 서비스는 중국 이용자들에게 편리함을 제공하는 것을 넘어서 그들의 일상생활을 크게 변화시켰음을 알 수 있었다. 그리고 신용카드 결제가 보편화되지 않은 중국에서 모바일 결제 서비스는 현금결제를 완전히 대체할 수 있는 서비스로 성장할 가능성이 높음을 알 수 있었다.

소셜 빅데이터를 활용한 한국관광 트렌드에 관한연구 -감성분석을 중심으로- (A study on Korean tourism trends using social big data -Focusing on sentiment analysis-)

  • 최연희;유경미
    • 문화기술의 융합
    • /
    • 제10권3호
    • /
    • pp.97-109
    • /
    • 2024
  • 국내관광 영역에서 관광 소비 주체인 외래관광객과 내국인에 대한 관광 트렌드 분석은 한국 관광시장 뿐 만 아니라 지역 및 정부의 관광정책을 수립하는 관계자에게도 필수적이라 할 수 있다. 이에 소셜미디어 상의 핵심키워드와 감성분석을 알아보고 향후 관광소비자의 커뮤니케이션과 정보를 통해 마케팅 전략 계획을 수립하고 국내 관광산업을 활성화시키고자 한다. 한국관광의 트렌드를 분석하기 위해 텍스톰(TEXTOM) 6.0을 활용하였다. 구글, 네이버, 다음이 제공하는 카페, 블로그, 뉴스 등을 대상으로 '한국관광', '국내관광'을 키워드로 하여 2022년 9월31일부터 2023년 8월31일까지 데이터를 수집하였다. 텍스트마이닝을 통하여 빈도순으로 핵심 키워드와 TF-IDF를 각각 100개씩 추출한 후, CONCOR 분석, 감성분석을 실시하였다. 한국관광 핵심 키워드는 관광지, 여행동반 및 행태, 관광동기 및 체험, 숙박형태, 관광정보, 감성 관련 등에 관한 단어들이 상위권에 노출되었다. CONCOR분석 결과는 관광지, 관광정보, 관광활동/체험, 관광동기/콘텐츠, 인바운드 관련 등과 관련된 5개의 클러스터로 구분되었다. 마지막으로 감성분석 결과 긍정에 대한 문서와 어휘가 높게 나타났다. 이 연구는 한국관광에 대한 텍스트 마이닝을 통하여 급변하는 한국관광 트렌드를 분석하여 내국인 뿐 만 아니라 방한 외국인에 대한 국내관광 활성화에 의미 있는 기초자료를 제공할 것으로 기대한다.

Case-Related News Filtering via Topic-Enhanced Positive-Unlabeled Learning

  • Wang, Guanwen;Yu, Zhengtao;Xian, Yantuan;Zhang, Yu
    • Journal of Information Processing Systems
    • /
    • 제17권6호
    • /
    • pp.1057-1070
    • /
    • 2021
  • Case-related news filtering is crucial in legal text mining and divides news into case-related and case-unrelated categories. Because case-related news originates from various fields and has different writing styles, it is difficult to establish complete filtering rules or keywords for data collection. In addition, the labeled corpus for case-related news is sparse; therefore, to train a high-performance classification model, it is necessary to annotate the corpus. To address this challenge, we propose topic-enhanced positive-unlabeled learning, which selects positive and negative samples guided by topics. Specifically, a topic model based on a variational autoencoder (VAE) is trained to extract topics from unlabeled samples. By using these topics in the iterative process of positive-unlabeled (PU) learning, the accuracy of identifying case-related news can be improved. From the experimental results, it can be observed that the F1 value of our method on the test set is 1.8% higher than that of the PU learning baseline model. In addition, our method is more robust with low initial samples and high iterations, and compared with advanced PU learning baselines such as nnPU and I-PU, we obtain a 1.1% higher F1 value, which indicates that our method can effectively identify case-related news.

SNA 분석을 활용한 중국물류 연구동향 분석에 관한 연구 (SNA Approach for Analyzing the Research Trend of China's Logistics)

  • 송시성;박성훈;여기태
    • 디지털융복합연구
    • /
    • 제16권5호
    • /
    • pp.55-63
    • /
    • 2018
  • 중국 물류 산업에 큰 변화가 있었음에도 중국 물류의 연구 동향에 대한 연구는 거의 이루어지지 않았다. 기존 연구는 운송 효율성, 창고 위치 및 항만 효율 등과 같은 세분화된 주제로 연구가 진행되었다. 본 연구에서는 2000년부터 2017년까지 중국 물류의 연구 동향을 SNA방법을 이용하여 분석하였다. 자료는 해외저널에서 수집되었으며, 총 82 개 관련 학술지가 분석대상으로 사용되었다. 2000년에서 2017년까지 기간을 나누어 분석을 진행하였고, 첫 번째 기간 (2000-2008)은 "Globalization", "Hong Kong", "FDI" 및 "outsousing"과 같은 키워드가 상위 키워드로 도출되었다. 두 번째 기간(2009-2013)의 결과는 "internation trade", 및 "reverse logistics"와 같은 키워드들이 도출되었고, 세 번째 기간(2013-2017)에는 "3PL", "warehousing", "railways", "supply chain", "economic", "port" 및 "Belt and Road"등의 키워드가 상위로 나타났다. SNA 방법을 사용한 중국물류 연구 트렌드 분석 결과, 세계화 상황에서 중국이 급속히 변화함에 따라 중국 물류의 연구동향이 진화하고 있음을 보여주고 있다.

검색 키워드 확장을 이용한 온톨로지 자동 생성 시스템 개발 (The Development of Automatic Ontology Generation System Using Extended Search Keywords)

  • 심준;이홍철
    • 한국산학기술학회논문지
    • /
    • 제10권6호
    • /
    • pp.1220-1228
    • /
    • 2009
  • 시맨틱 웹의 핵심인 온톨로지는 주로 특정 도메인에 한정되거나 휴리스틱에 의존해 의미와 관계를 정의하여 생성하고 있다. 하지만 온톨로지의 생성은 매우 어려울 뿐만 아니라 많은 시간이 소요되는 작업이다. 특정 분야에서 사용되는 온톨로지와 달리 웹에서 사용되는 온톨로지는 지식 및 정보 표현의 범위가 한정적이지 않기 때문에 기존의 온톨로지 생성 방식으로는 정보를 표현하기가 어렵다. 따라서 온톨로지의 자동 생성은 시맨틱 웹의 구현에 있어서 매우 중요한 부분을 차지하게 된다. 본 논문에서는 웹 온톨로지를 자동으로 생성하기 위해서 형태소 분석을 이용하여 검색엔진에서 사용자들이 입력하는 검색 키워드로부터 색인어를 추출하고, 이와 관련된 키워드를 확장시켜 온톨로지를 생성하고 갱신하는 방법에 대하여 제안한다.

A Feasibility Study on Adopting Individual Information Cognitive Processing as Criteria of Categorization on Apple iTunes Store

  • Zhang, Chao;Wan, Lili
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제27권2호
    • /
    • pp.1-28
    • /
    • 2018
  • Purpose More than 7.6 million mobile apps could be approved on both Apple iTunes Store and Google Play. For managing those existed Apps, Apple Inc. established twenty-four primary categories, as well as Google Play had thirty-three primary categories. However, all of their categorizations have appeared more and more problems in managing and classifying numerous apps, such as app miscategorized, cross-attribution problems, lack of categorization keywords index, etc. The purpose of this study focused on introducing individual information cognitive processing as the classification criteria to update the current categorization on Apple iTunes Store. Meanwhile, we tried to observe the effectiveness of the new criteria from a classification process on Apple iTunes Store. Design/Methodology/Approach A research approach with four research stages were performed and a series of mixed methods was developed to identify the feasibility of adopting individual information cognitive processing as categorization criteria. By using machine-learning techniques with Term Frequency-Inverse Document Frequency and Singular Value Decomposition, keyword lists were extracted. By using the prior research results related to car app's categorization, we developed individual information cognitive processing. Further keywords extracting process from the extracted keyword lists was performed. Findings By TF-IDF and SVD, keyword lists from more than five thousand apps were extracted. Furthermore, we developed individual information cognitive processing that included a categorization teaching process and learning process. Three top three keywords for each category were extracted. By comparing the extracted results with prior studies, the inter-rater reliability for two different methods shows significant reliable, which proved the individual information cognitive processing to be reliable as criteria of categorization on Apple iTunes Store. The updating suggestions for Apple iTunes Store were discussed in this paper and the results of this paper may be useful for app store hosts to improve the current categorizations on app stores as well as increasing the efficiency of app discovering and locating process for both app developers and users.

텍스트마이닝 방법론을 활용한 웨어러블 관련 키워드의 트렌드 분석 (Analyzing the Trend of Wearable Keywords using Text-mining Methodology)

  • 김민정
    • 디지털융복합연구
    • /
    • 제18권9호
    • /
    • pp.181-190
    • /
    • 2020
  • 본 연구는 신문기사로부터 수집한 웨어러블 관련 텍스트를 대상으로 텍스트마이닝을 수행하여 웨어러블 관련 키워드의 트렌드를 분석하였다. 이를 위해 1992년부터 2019년까지 신문기사 11,952건을 수집하여 빈도분석과 바이그램 분석을 적용하였다. 빈도분석 결과 삼성전자, LG전자, 애플이 최상위 빈도어로 추출되었으며 스마트워치, 스마트밴드가 기기 측면에서 지속적으로 등장하였음을 알 수 있었다. 또한 IT전시회가 매년 고빈도어로 나타났으며 차세대 기술 관련 키워드와 융합된 내용이 기사화되는 것을 볼 수 있었다. 바이그램 분석 결과, 세계-최초, 세계-최대 같은 단어 묶음이 지속적으로 등장하였으며 이슈나 이벤트가 발생할 때마다 관련된 새로운 단어 묶음이 도출됨을 확인할 수 있었다. 이러한 웨어러블 관련 키워드의 트렌드 추이 파악은 웨어러블 동향과 향후 방향성을 이해하는데 유용할 것이다.

의미 네트워크 분석을 활용한 세탁전문점에 대한 소비자 인식 연구 (Consumers' perceptions of professional laundry shops using semantic network analysis)

  • 김지연;이규혜
    • 복식문화연구
    • /
    • 제27권6호
    • /
    • pp.645-653
    • /
    • 2019
  • Laundry services are becoming more specialized and diversified. Therefore, this study investigated consumers' perceptions of professional laundry shops by analyzing social media data. For this purpose, text data from blogs, cafés, and Q&A sections ('Ji-Sik-In') on the portal site, naver.com, was collected. Sixty-four keywords were extracted from 2,213 social texts and transformed into a one-mode matrix using KrKwic, a program for the analysis of Korean text. Semantic network analysis was conducted to understand the network structure and the results were visualized using NodeXL. Keywords included fashion items and materials that require specialized professional laundry services, words related to the establishment of laundry shops, and laundry shop brands. Essential keywords of professional laundry shops included 'luxury,' 'footwear,' 'removal,' 'bag,' 'leather,' 'sneakers,' 'padding,' 'premium,' 'dyeing,' and 'franchise.' These results could be used to deduce that consumers perceive a professional laundry shop as a franchise shop offering specialized professional laundry services. A cluster analysis was conducted to identify the types of consumer perceptions of professional laundry shops. The network was divided into three groups: 'specialized professional laundry service,' 'laundry and repair of winter coats and jackets,' and 'the establishment of a professional laundry shop.' According to the results, consumers perceive professional laundry shops as franchises that offer specialized professional laundry services rather than general laundry services. Therefore, professional laundry shops need a strategy to develop special laundry services that differentiate them from other companies and communicate with consumers about these services.

해양 플라스틱 쓰레기로 인한 문제와 해결책에 관한 초등학생의 인식 조사 (Elementary Students' Perceptions of Marine Plastic Waste Problem and Solutions)

  • 문공주;서경운;강은희;황요한
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제39권3호
    • /
    • pp.399-411
    • /
    • 2020
  • This study aims to explore how elementary students perceive and approach the issue of plastic debris in marine habitats by examining students' perspectives on the ecosystem and environmental solutions. The study was conducted to 143 Grade Four elementary school students in Seoul. After implementing two class-units on plastic waste, students' constructed responses on the problem of and solutions to plastic debris in marine habitats were collected. Data were analyzed through semantic network analysis and the keywords were visualized to reflect their relationships. Furthermore, students' responses on how they perceive environmental problems were further analyzed based on the following analysis criteria: students' perspectives on the ecosystem, the level of complexity of food chain(s), and the scope of their perspective. Also, student responses on environmental solutions were classified to be either at a personal or social level. Through semantic network analysis, keywords identified for students' perceptions on the problem were the sea, plastic, debris, animals, living things, humans, extinction, while keywords extracted for the solutions were plastic, debris, recycling, disposable, and I. Based on the analysis criteria, it was found that students were well aware of the food chain concept, could perceive the ecosystem as having comprised of both biotic and abiotic factors, and could approach the problem beyond the scope of the marine environment. Also, most students mentioned the solutions only at a personal level. Based on the findings, implications on how to move forward in educating environmental issues related to the ecosystem in science education is further discussed.