• Title/Summary/Keyword: Reinforcing material

Search Result 540, Processing Time 0.026 seconds

Cure Characteristics, Mechanical Properties and Abrasion Resistance of Silica Filled Natural Rubber Vulcanizate

  • Lee, Hae Gil;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.50 no.3
    • /
    • pp.159-166
    • /
    • 2015
  • Silica which is used for reinforcing filler in tire industry is widely known as eco-friendly material exerting $CO_2$ reduction effect through decrease of rolling resistance and improvement of wet grip. Generally silica is classified as a highly polar filler because it contains a large number of silanol (Si-OH) group on its surface. And also silica gives a lower reinforcing effect than carbon black due to its poorer rubber-filler interaction. Therefore silica is treated with silane coupling agent or activator, then following the conventional rubber blend method, vulcanized sheets were prepared using a hot press, and cure characteristics, mechanical properties and abrasion resistance of the test specimens were investigated. It was found that with an increase in the silane coupling agent content the tensile strength, 300% modulus and abrasion resistance increased while Mooney viscosity decreased and crosslink density slightly increased with an increase of activator.

Strength Propreties of Binary and Ternary Blended of Ultra Flowing Self-Compacting Concrete (2성분계 및 3성분계 초유동 자기충전 콘크리트의 강도 특성)

  • Choi, Yun-Wang;Kim, Kyung-Hwan;Ha, Sang-Woo;Moon, Dae-Joung;Kang, Hyun-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.489-492
    • /
    • 2006
  • Needs for the new technologies and cutting-edge Ultra Flowing Self-Compacting Concrete are emerging as the concrete structures are becoming bigger and more specialized recently. In North America and Europe, SCC, which has high resistance against flow ability and segregation, is being used as concrete material in applications such as precast and prestressed bridges, where reinforcing bars are overcrowdedly placed. In Korea, SCC has been utilized limitedly in building structures but its utilization should be expanded to engineering structures such as bridges. In this study, for the application in precast and prestressed bridges with overlycrowded reinforcing bars, USCC was mixed with admixtures to give a binary system and a ternary system according to the 1st grade rules by JSCE (Japan Society of Civil Engineers). Compressive strength and splitting tensile strength of the resulting USCCs were tested. Elastic modulus were compared with the values suggested in CEB-FIP code and ACI 318-05.

  • PDF

A Study on the Strengthening effect of Concrete Reinforcement Bracket on the External Clay Brick Wall (외부치장적벽돌 벽체에 대한 콘크리트 보강브라켓의 보강효과에 관한 연구)

  • Kim, Sun-Woo;Kim, Yang-Jung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.117-118
    • /
    • 2020
  • The masonry structure is constructed by cement mortar binding material of brick objects and uses reinforced hardware (connected hardware or wall tie) together when building. However, over time, the corrosion of reinforced steel and the deterioration of joint mortar as well as bricks cause the risk of collapse. In particular, when the externally decorated brick wall is installed on the concrete girder for each floor, the angle bracket is not constructed or corroded, the full-layer weight load is applied to the wall of 0.5B, which is an example of full-scale or collapse. The purpose of this study is to provide numerical information on the reinforcement design by experimentally studying the structural performance of concrete reinforcement brackets that reinforce the vertical load of the exterior wall.

  • PDF

Experimental analysis of damage in short-fiber-reinforced composite waste polyethylene terephthalate as a pile foundation material

  • Jang, Hongseok;Seo, Segwan;Cho, Daesung
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.147-157
    • /
    • 2022
  • This study assessed the compressive and tensile strengths and modulus of elasticity of waste polyethylene terephthalate (PET) using the ASTM standard tests. In addition, short carbon and glass fibers were mixed with waste PET to examine the improvements in ductility and strength during compression. The bonding was examined via field-emission scanning electron microscopy. The strength degradation of the waste PET tested under UV was 40-50%. However, it had a compressive strength of 32.37 MPa (equivalent to that of concrete), tensile strength of 31.83 MPa (approximately ten times that of concrete), and a unit weight of 12-13 kN/m3 (approximately half that of concrete). A finite element analysis showed that, compared with concrete, a waste PET pile foundation can support approximately 1.3 times greater loads. Mixing reinforcing fibers with waste PET further mitigated this, thereby extending ductility. Waste PET holds excellent potential for use in foundation piles, especially while mitigating brittleness using short reinforcing fibers and avoiding UV degradation.

Mechanical splices of reinforcing bars subjected to bending moments

  • Sadegh Hashemi;Ali Kheyroddin;Ghasem Pachideh
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.301-311
    • /
    • 2024
  • Different methods have been proposed in the literature for splicing the reinforcing bars in the construction of concrete structures, which are alternatively used depending on design requirements. The most common approach is the lap splicing which is known as a cost-effective method although, its main disadvantages including congestion of bars at the lap zone and consequently, material wastage has motivated utilization of the other techniques such as mechanical splices (couplers). To better evaluate the performance of the couplers, 6 reinforced concrete (RC) beams whose difference is only the type and location of splices have been experimentally studied in this paper. Based on the results, the mechanical connection of the bars did not markedly affect the load-carrying capacity of the specimens. Moreover, it was observed that after applying the loads and failure of the specimens, none of the bars ruptured at the splice location and all couplers remained undamaged.

An Experimental Study on the Reinforcing Effects of Mixtures of Vinyl Strip and Cement on the Sand Specimens (비닐스트립-시멘트 혼합 모래시편의 보강효과에 대한 실험연구)

  • Yu, Jeong-Min;Kim, Jong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.5-16
    • /
    • 2018
  • The ever-increasing amount of waste vinyl is causing big environmental problems. In particular, those from farming industry are sometimes left on site or even illegally reclaimed due to the lack of environmental concerns and capacity for collection, which worsens the situation. It is, therefore, believed that the recycling of waste vinyl is the most ideal solution in the viewpoint of environmental preservation. In this context, the potential of vinyl strip as a ground reinforcing material is investigated to expand the application of waste vinyl recycling. In this study, a series of uniaxial compression tests and resonant column tests were performed for sand specimens reinforced with vinyl strips and cement to investigate their reinforcing effects on static and dynamic behaviors. The changes in the uniaxial compressive strength (UCS), the shear modulus and the damping ratio according to the mixing ratio of vinyl strips and cements were analysed for sand specimens, having 40% and 60% relative densities, under various mixing conditions. As a result, both the static and dynamic reinforcing effects of vinyl strip-cement mixture were confirmed and the optimum mixing ratio was proposed.

Steel Fiber Reinforcing Effect Analysis of Slab Panel Structure and Assessment Technics of Toughness (강섬유보강 패널구조의 보강효과 분석 및 인성평가 기법)

  • Jeon, Chan-Ki;Park, Sun-Kyu
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.209-220
    • /
    • 1999
  • This paper is aimed to evaluate the effectiveness of flexural toughness of slab panel structures($60{\times}60{\times}10$) reinforced by steel fiber instead of wire mesh. Steel fiber used in this study is double hooked Dramix type fiber. And the fiber length is 60mm, diameter is 0.8mm, Various assessment methods of toughness index are used to estimate the proper effectiveness. In this experimental study, we find that Johnston, JCI-SF4 and EFNARC method are more effective to assess the flexural toughness of slab panels than the others. And the steel fiber is very effective alternative material to reinforce slab panel structures instead of wire mesh. Fiber volume fraction of 0.5~0.75% is more useful than the others in enhancing the post-peak energy absorption and toughness index by Johnston's $I_{5.5}$ assessment method. And the slab panels reinforcing with steel fiber are more resistant to crack propagation than wire mesh reinforcing slabs.

Applicability of Cu-Al-Mn shape memory alloy bars to retrofitting of historical masonry constructions

  • Shrestha, Kshitij C.;Araki, Yoshikazu;Nagae, Takuya;Omori, Toshihiro;Sutou, Yuji;Kainuma, Ryosuke;Ishida, Kiyohito
    • Earthquakes and Structures
    • /
    • v.2 no.3
    • /
    • pp.233-256
    • /
    • 2011
  • This paper investigates the applicability of newly developed Cu-Al-Mn shape memory alloy (SMA) bars to retrofitting of historical masonry constructions by performing quasi-static tests of half-scale brick walls subjected to cyclic out-of-plane flexure. Problems associated with conventional steel reinforcing bars lie in pinching, or degradation of stiffness and strength under cyclic loading, and in their inability to restrain residual deformations in structures during and after intense earthquakes. This paper attempts to resolve the problems by applying newly developed Cu-Al-Mn SMA bars, characterized by large recovery strain, low material cost, and high machinability, as partial replacements for steel bars. Three types of brick wall specimens, unreinforced, steel reinforced, and SMA reinforced specimens are prepared. The specimens are subjected to quasi-static cyclic loading up to rotation angle enough to cause yielding of reinforcing bars. Corresponding nonlinear finite element models are developed to simulate the experimental observations. It was found from the experimental and numerical results that both the steel reinforced and SMA reinforced specimens showed substantial increment in strength and ductility as compared to the unreinforced specimen. The steel reinforced specimen showed pinching and significant residual elongation in reinforcing bars while the SMA reinforced specimen did not. Both the experimental and numerical observations demonstrate the superiority of Cu-Al-Mn SMA bars to conventional steel reinforcing bars in retrofitting historical masonry constructions.

Interfacial Characterization of Mineralized Carbon Nanotubes (광물화된 탄소나노튜브 첨가재의 계면 특성화)

  • Park, Chanwook;Jung, Jiwon;Yun, Gunjin
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.282-287
    • /
    • 2018
  • In this paper, we explore interfacial properties of the mineralized CNTs when they are employed as reinforcing fillers in a polymer nanocomposite using molecular dynamics (MD) simulations. Recently, several studies on mineralizing carbon nanotubes (CNTs) with an aid of nitrogen doping to CNTs have been reported. However, there is a lack of studies on the reinforcing effects of the mineralized CNTs when it is employed as a filler of nanocomposites. Silica ($SiO_2$) is used as a mineral material and poly (methyl metacrylate) (PMMA) is used as a polymer matrix. Pull-out simulations are conducted to obtain the interfacial energy and the interfacial shear stress. It was found that the silica mineralized CNTs have higher interfacial interaction with the polymer matrix. In the future, by examining various thermomechanical properties of the mineralized-CNT-filler/polymer nanocomposites, we will search for potential applications of the novel reinforcing filler.

Reinforcing Effect and Behaviors of Root-Pile in Heavy-Duty Direct Shear Test (대형직접전단시험에 의한 뿌리말뚝의 거동 및 보강효과)

  • Han, Jung-Geun;Jang, Sin-Nam
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.3
    • /
    • pp.23-30
    • /
    • 2002
  • In recently, using of steel reinforcements by reinforcing materials of the reinforced earth, micro-pile and root-pile etc,. is wide-spreading in the stabilizing control of cutting and embankment slopes, but the failure mechanism of reinforced earth as well as the effect of insert angles or types of reinforcement and others are not defined clearly. In this study, therefore heavy-duty direct shear tests were exercised on the reinforced soil and the non-reinforced soil, which was executed for research on the interaction of soil-reinforcement and theirs behavior. The hardness and softness and the standard sands were used for modeling of reinforced soil, the material constants for the computer simulation were estimated from the results of CD-Test. The effects of reinforcing and of friction increasing on the softness, area ratio of reinforcements is equal, were the better than them of the hardness, as well the reinforcing effects of shear strength without regard to the area ratio is much the same at $10^{\circ}$, insert angle of reinforced bar, differ from them of the existing study. Then, the results of numerical analysis showed that the behavior of reinforcements displayed bending resistance and shear resistance at $15^{\circ}$ and $30^{\circ}$, respectively. Also, the state of strain transfer was observed and the behavior of resistance mechanism on reinforcements presented almost the same them of landslides stabilizing pile.