• 제목/요약/키워드: Reinforcement of steel plates

검색결과 97건 처리시간 0.026초

Seismic behavior of reinforced concrete column-steel beam joints with and without reinforced concrete slab

  • Tong Li;Jinjie Men;Huan Li;Liquan Xiong
    • Structural Engineering and Mechanics
    • /
    • 제86권3호
    • /
    • pp.417-430
    • /
    • 2023
  • As the key part in the reinforced concrete column-steel beam (RCS) frame, the beam-column joints are usually subjected the axial force, shear force and bending moment under seismic actions. With the aim to study the seismic behavior of RCS joints with and without RC slab, the quasi-static cyclic tests results, including hysteretic curves, slab crack development, failure mode, strain distributions, etc. were discussed in detail. It is shown that the composite action between steel beam and RC slab can significantly enhance the initial stiffness and loading capacity, but lead to a changing of the failure mode from beam flexural failure to the joint shear failure. Based on the analysis of shear failure mechanism, the calculation formula accounting for the influence of RC slab was proposed to estimate shear strength of RCS joint. In addition, the finite element model (FEM) was developed by ABAQUS and a series of parametric analysis model with RC slab was conducted to investigate the influence of the face plates thickness, slab reinforcement diameter, beam web strength and inner concrete strength on the shear strength of joints. Finally, the proposed formula in this paper is verified by the experiment and FEM parametric analysis results.

FRP 보강적층판의 접착성능 및 파괴인성평가 (Adhesive Performance and Fracture Toughness Evaluation of FRP-Reinforced Laminated Plate)

  • 정홍주;홍순일
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권6호
    • /
    • pp.868-875
    • /
    • 2015
  • 목구조물 접합부에 기존의 슬릿(slit)형 강판을 대체하기 위해서 FRP (Fiber Reinforced Plastic) 보강적층판을 제작하였다. 보강재, 접착제 종류에 따라 총 4가지 타입의 FRP 보강적층판을 제작하였으며, 접합부 적용 전 KSF 3021과 KSF 2160에 의거한 박리실험과 ASTM D5045-99에서 제안한 Compact Tension (CT)형 파괴인성 시험을 실시하였다. 접착성능 시험결과 GFRP textile, GFRP sheet, GFRP Textile-Sheet 타입의 FRP 보강적층판은 침지 및 내수침지박리 시험에서 모두 KS 기준인 박리율 5% 이하를 만족하였다. 그러나 Aramid 타입의 시험편은 침지박리율 4.8%로 기준을 만족하였으나 내수침지박리율 70%로 합격기준을 만족하지 못하였다. 파괴인성 시험결과 단판만을 교차적층 시킨 대조군시험편보다 목재 대비 보강재 체적비를 23%로 함으로서 FRP 보강적층판의 내력이 2~4배 증가하였다. 그중에서도 GFRP Textile-Sheet 타입의 시험편이 하중 평행방향의 유리섬유 배열로 인해 할렬파단을 억제하면서 대조군 대비 응력확대계수 비가 61% 증가되어 파괴를 가장 크게 억제하는 것으로 확인되었다. FRP 보강적층판과 비금속 dowels을 사용한 접합부의 인장형 전단내력은 금속접합에 비해 약 12% 낮은 내력이 측정되었다.

볼트접합 앵글을 사용한 PSRC 합성기둥의 편심 압축실험 (Eccentric Axial Load Test of Prefabricated Composite Columns Using Bolt-connected Steel Angles)

  • 김현진;황현종;박홍근;김동관;양종민
    • 한국강구조학회 논문집
    • /
    • 제29권3호
    • /
    • pp.249-260
    • /
    • 2017
  • 볼트접합 앵글을 사용한 선조립-SRC 합성기둥(이하 PSRC 합성기둥)의 구조성능을 평가하기 위하여 PSRC 기둥실험체 6개와 일반 SRC 기둥실험체 2개에 대하여 편심축 압축실험을 수행하였다. 횡보강재의 수직간격 및 단면형상과 축하중의 편심율을 실험변수로 고려하였다. 실험결과, 편심율이 큰 경우 PSRC 실험체는 단면 코너에 위치한 고강성 앵글로 인하여 압축하중 재하능력 및 변형능력이 기존 SRC 실험체보다 향상되었다. PSRC 기둥 실험체에서 횡방향 강판의 좁은 횡보강 간격과 Z형 단면의 횡방향 강판은 우수한 횡구속력을 제공하였으며, 하중재 하능력을 향상시켰다. 실험 및 수치해석을 통한 합성기둥의 휨 압축 강도는 현행설계기준에 의한 휨-압축 상관도를 상회하였다. 수치해석결과는 각 실험체의 강성, 최대강도, 최대하중 이후 강도감소거동을 비교적 잘 예측하였다.

Using DQ method for vibration analysis of a laminated trapezoidal structure with functionally graded faces and damaged core

  • Vanessa Valverde;Patrik Viktor;Sherzod Abdullaev;Nasrin Bohlooli
    • Steel and Composite Structures
    • /
    • 제51권1호
    • /
    • pp.73-91
    • /
    • 2024
  • This paper has focused on presenting vibration analysis of trapezoidal sandwich plates with a damaged core and FG wavy CNT-reinforced face sheets. A damage model is introduced to provide an analytical description of an irreversible rheological process that causes the decay of the mechanical properties, in terms of engineering constants. An isotropic damage is considered for the core of the sandwich structure. The classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The First-order shear deformation theory of plate is utilized to establish governing partial differential equations and boundary conditions for the trapezoidal plate. The governing equations together with related boundary conditions are discretized using a mapping-generalized differential quadrature (GDQ) method in spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained using GDQ method. Validity of the current study is evaluated by comparing its numerical results with those available in the literature. After demonstrating the convergence and accuracy of the method, different parametric studies for laminated trapezoidal structure including carbon nanotubes waviness (0≤w≤1), CNT aspect ratio (0≤AR≤4000), face sheet to core thickness ratio (0.1 ≤ ${\frac{h_f}{h_c}}$ ≤ 0.5), trapezoidal side angles (30° ≤ α, β ≤ 90°) and damaged parameter (0 ≤ D < 1) are carried out. It is explicated that the damaged core and weight fraction, carbon nanotubes (CNTs) waviness and CNT aspect ratio can significantly affect the vibrational behavior of the sandwich structure. Results show that by increasing the values of waviness index (w), normalized natural frequency of the structure decreases, and the straight CNT (w=0) gives the highest frequency. For an overall comprehension on vibration of laminated trapezoidal plates, some selected vibration mode shapes were graphically represented in this study.

Numerical studies on axially loaded doubler plate reinforced elliptical hollow section T-joints

  • Sari, Busra;Ozyurt, Emre
    • Steel and Composite Structures
    • /
    • 제43권1호
    • /
    • pp.107-116
    • /
    • 2022
  • This paper presents results of numerical studies completed on unreinforced and doubler plate reinforced Elliptical Hollow Section (EHS) T-joints subjected to axial compressive loading on the brace member. Non-linear finite element (FE) models were developed using the finite element code, ABAQUS. Available test data in literature was used to validate the FE models. Subsequently, a parametric study was carried out to investigate the effects of various geometrical parameters of main members and reinforcement plates on the ultimate capacity of reinforced EHS T-joints. The parametric study found that the reinforcing plate significantly increases the ultimate capacity of EHS T-joints up to twice the capacity of the corresponding unreinforced joint. The thickness and length of the reinforcing plate have a positive effect on the ultimate capacity of Type 1 joints. This study, however, found that the capacity of Type 1 orientation is not dependent on the brace-to-chord diameter ratio. As for type 2 orientations, the thickness and length of the reinforcement have a minimal effect on the ultimate capacity. A new design method is introduced to predict the capacity of the reinforced EHS T-joints Type 1 and 2 based on the multiple linear regression analyses.

등가 스트럿 모델에 의한 리브 보강 RBS 철골모멘트접합부의 내진설계 (Seismic Design of Rib-Reinforced RBS (Reduced Beam Section) Steel Moment Connections Based on Equivalent Strut Model)

  • 이철호
    • 한국강구조학회 논문집
    • /
    • 제13권5호
    • /
    • pp.493-502
    • /
    • 2001
  • 본 연구에서는 아직 설계법이 정립되지 않은 리브로 보강된 RBS 철골모멘트 접합부의 내진설계법을 등가 스트럿 모델에 의거하여 제시하였다. 종종 엔지니어가 리브를 사용하여 철골모멘트접합부의 내진성능을 높이고자 할 경우 고전 휨이론에 의거하여 리브와 보로 구성된 일체단면의 단면2차모멘트로서 그루브 용접부의 인장응력도 예측하려 하는데 이는 타당치 않다. 리브접합부의 응력전달 메커니즘은 고전 휨이론에 의한 메카니즘과는 전혀 다르다. 즉 리브는 고전 휨이론에 의한 기대와는 달리 리브의 대각선 기울기 방향으로 스트럿 거동을 보인다. 필자는 이 같은 점에 주목하여 리브를 스트럿 요소로 파악하여 리브 접합부의 설계에 활용될 수 있는 등가 스트럿 모델을 이미 제시한 바가 있다. 본 연구에서는 이 등가 스트럿 모델을 기초로 리브접합부의 실용설계에 활용될 수 있는 단계별 설계절차를 제안하였다.

  • PDF

유리섬유보강재를 이용한 Deep Beam의 전단보강에 관한 실험적 연구 (An Experimental Study on Shear Strengthening of Concrete Deep Beams with Glass Fiber Sheets)

  • 조병완;김영진;김도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.609-614
    • /
    • 1997
  • Recently, many researchers have performed R&D about strengthening of R/C with steel plates, carbon fiber sheets. aramid fiber sheets and glass fiber sheets, and so on. However most of research were limited in study of flexural strengthening of R/C beams. This paper shows the results of an experimental study on shear reinforcement of deep beams using Glass Fiber Sheet in relation to shear-span ratio. strengthening orientation and anchorage. The results prove that shear failure is governed by reinforced orientation. adherence and anchorage. Additional anchorage of fibers does not only cause the improvement in the internal resistance, but also control the brittle shear failure of specimen after reaching the maximum load.

  • PDF

Repair, retrofitting and rehabilitation techniques for strengthening of reinforced concrete beams - A review

  • Ganesh, P.;Murthy, A. Ramachandra
    • Advances in concrete construction
    • /
    • 제8권2호
    • /
    • pp.101-117
    • /
    • 2019
  • Structural strengthening of reinforced concrete (RC) beams is becoming essential to meet the up-gradation of existing structures due to the infrastructure development. Strengthening is also essential for damaged structural element due to the adverse environmental condition and other distressing factors. This article reviews the state of the field on repair, retrofitting and rehabilitation techniques for the strengthening of RC beams. Strengthening of RC beams using various promising techniques such as externally bonded steel plates, concrete jacketing, fibre reinforced laminates or sheets, external prestressing/external bar reinforcement technique and ultra-high performance concrete overlay have been extensively investigated for the past four decades. The primary objective of this article is to discuss investigations on various strengthening techniques over the years. Various parameters that have been discussed include the flexural capacity, shear strength, failure modes of various strengthening techniques and advances in techniques over the years. Firstly, background information on strengthening, including repair, retrofitting, and rehabilitation of RC beams is provided. Secondly, the existing strengthening techniques for reinforced concrete beams are discussed. Finally, the relative comparisons and limitations in the existing techniques are presented.

콘크리트의 누설성에 미치는 영향 요인에 관한 실험적 연구 (Experimental Study for the Factors Influenced on the Permeability of Concrete)

  • 김진근;이성태;양은익;김민욱;이성규;최강룡
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.725-730
    • /
    • 1998
  • In the nuclear power plant, steel or polymer liner plates are adopted to prohibit inner concrete surface contacting with gas or liquid materials. If there is an accident, the plate will be damaged, and concrete shall have final responsibility to safety requirements. In this paper, an experimental research was carried out to investigate the effects of construction joint and wet and loading condition on the permeability of concrete. The test results showed that leakage rate is decreased much more at the following cases than the others : (a)wet condition, (b)without a construction joint case, and (c)case subjected to external loads. It was noted that more reinforcement is required at the latter case.

  • PDF

Design of Elastomeric Bearing System and Analysis of it Mechanical Properties

  • Moon, Byung-Young;Kang, Gyung-Ju;Kang, Beom-Soo;Cho, Dae-Seung
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.20-29
    • /
    • 2004
  • This paper proposes a new type of bearing system. In this study, a method for design of on elastomeric bearing system and its mechanical property analysis are carried. Experimental and theoretical studies of the elastomeric bearings with fiber reinforcement were proved effective new lightweight bearing system. The fibers in the bearings for isolation are assumed to be flexible in extension, in contrast to the steel plates in the conventional bearing system. Several kinds of bearing systems in the form of long strips are designed, fabricated and tested. The results suggest that it is possible to produce the economical and effective fiber-reinforced elastomeric bearing that matches the behavior of a steel-reinforced bearing. Feasibility and advantages of the proposed bearings are illustrated by the application of the analytic procedure to the structure system. Results obtained here are reported to be an efficient approach with respect to bearing system and design of bearing against shock absorbing system when compared with other conventional one.