• Title/Summary/Keyword: Reinforcement details

Search Result 258, Processing Time 0.025 seconds

Experimental Studies and Detailing Suggestion for Reinforced Concrete Slabs with Steps (단차가 있는 철근콘크리트 슬래브의 구조성능 평가 실험 및 상세 제안)

  • Kim, Sang-Hee;Hong, Geon-Ho;Park, Hong-Gun;Han, Kyoo-Beom;Kang, Thomas H.K.
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.447-455
    • /
    • 2013
  • In this study, reinforced concrete slabs with steps were experimentally studied to analyze their structural performance and to suggest reinforcing details in the step. Because the stepped slabs may behave very poorly in terms of bending strength, stiffness, deflection, cracking, etc., the study is aimed to suggest proper reinforcing details such that the same bending strength is obtained as that without steps. The bending strengths of 12 test specimens with a variety of different reinforcing detail types or other parameters were compared with each other. The specimen without any additional reinforcement in the step had a very low bending strength and significant damage, and the specimens with diagonal reinforcements in the step showed substantial early cracks, experienced hinging of the step, and had a substantial loss of the bending strength. In contrast, the specimens with a combination of U-bars, reversed U-bars, L-bars, and reversed L-bars performed very well and almost reached to 100% of the slab bending strength. The U-bars and reversed U-bars were effective in controling the diagonal cracks, while the L-bars and reversed L-bars were effective in preventing from yielding of slab reinforcement near the step.

Clip-type Binding Implement Effect on Anchorage Behavior of 90-Degree End-Hooked Transverse Reinforcement in Reinforced Concrete Columns (클립형 연결장치로 결속된 90도 갈고리를 갖는 띠철근의 정착거동)

  • Park, Kyoung-Yeon;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.72-80
    • /
    • 2020
  • The purpose of this study is to secure the same or more structural performance and constructability for the details of hooks cross-constructed at 135 degrees used as external-ties standard detail in RC columns, therefore, to the purpose of improving constructability, the clip-type binding implement was suggested and A total of 28 pull-out specimens were prepared with the parameters of concrete compressive strength and clip-embeded length, clip installation location to examine the anchorage behavior of the clip-type binding implement. The experiment was carried out. The results of the experiment confirmed that the anchorage strength of the clip-type binding implement was higher than the details of hooks cross-constructed at 135-degree regardless of the diameter of tie and concrete strength, embeded clip length, clip installation. and The 90-degree end hook with clip-type binding implement was showed a similar an anchorage behavior of 135-degree end-hooked transverse reinforcement, consequently, The 90-degree end hooked with clip-type binding implement is evaluated to be the same anchorage behavior and performance as standard 135-degree end hook detail.

An Experimental Study on Reinforcement Method for Reuse of Onshore Wind Turbine Spread Footing Foundations (육상풍력터빈 확대기초의 재사용을 위한 보강방법에 관한 실험적 연구)

  • Song, Sung Hoon;Jeong, Youn Ju;Park, Min Su;Kim, Jeong Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • In order to reuse existing onshore turbine foundations, it is important to redesign and reinforce the existing foundations according to the upgraded tower diameter and turbine load. In the present study, a slab extension reinforcement method and structure details of an anchorage part were examined in consideration of the reuse of spread footings, which are the most widely used foundation type in onshore wind turbine foundations. Experiments were conducted to evaluate the load resistance performance of a reinforced spread footing according to structure details of an anchorage part. The results showed that (1) the strength of an anchorage part could be increased by more than 30 % by adding reinforcement bars in the anchorage part, (2) pile-sleeves attached to an anchor ring contributed to an increase in rotational stiffness by preventing shear slip behavior between the anchor ring and the concrete, and (3) slab connectors contributed to an increase in the strength and deformation capacity by preventing the separation of new and old concrete slabs.

Seismic Capacity Evaluation of Existing R/C Buildings Retrofitted by Internal Composite Seismic Strengthening Method Based on Pseudo-dynamic Testing (유사동적실험기반 내부접합형 합성내진보강공법을 적용한 기존 R/C 건물의 내진성능평가 )

  • Eun-Kyung Lee;Jin-Young Kim;Ho-Jin Baek;Kang-Seok Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.67-76
    • /
    • 2023
  • In this study, in order to enhance the joint capacity between the existing reinforced concrete (R/C) frame and the reinforcement member, we proposed a novel concept of Internal Composite Seismic Strengthening Method (CSSM) for seismic retrofit of existing domestic medium-to-low-rise R/C buildings. The Internal CSSM rehabilitation system is a type of strength-enhancing reinforcement systems, to easily increase the ultimate horizontal shear capacity of R/C structures without seismic details in Korea, which show shear collapse mechanism. Two test specimens of full-size two-story R/C frame were fabricated based on an existing domestic R/C building without seismic details, and then retrofitted by using the proposed CSSM seismic system; therefore, one control test specimen and one test specimen reinforced with the CSSM system were used. Pseudo-dynamic testing was carried out to evaluate seismic strengthening effects, and the seismic response characteristics of the proposed system, in terms of the maximum shear force, response story drift, and seismic damage degree compared with the control specimen (R/C bare frame). Experiment results indicated that the proposed CSSM reinforcement system, internally installed to the existing R/C frame, effectively enhanced the horizontal shear force, resulting in reduced story drift of R/C buildings even under a massive earthquake.

Development of a retrofit anchor system for remodeling of building exteriors

  • Yeun, Kyu Won;Hong, Ki Nam;Kim, Jong
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.839-856
    • /
    • 2012
  • To enable remodeling of the exterior of buildings more convenient, such finishing materials as curtain walls, metal panels, concrete panels or dry stones need to be easily detached. In this respect, this study proposed a new design of the slab for the purposes. In the new design, the sides of the slab were properly modified, and the capabilities of anchors fixed in the modified slab were experimentally tested. In details, a number of concrete specimens with different sizes and compressive strengths were prepared, and the effect of anchors with different diameters and embedment depths applied in the concrete specimens were tested. The test results of the maximum capacities of the anchors were compared with the number of current design codes and the stress distribution was identified. This study found that the embedment depth specified in the current design code (ACI318-08) should be revised to be more than 1.5 times the edge distance. However, with the steel sheet reinforcement, the experiment acquired higher tensile strength than the design code proposed. In addition, for two types of specimens in the tensile strength experiment, the current design code (ACI 318-08) is overestimated for the anchor depth of 75 mm. This study demonstrated that the ideal breakout failure was attainable for the side slot details of a slab with more than 180 mm of a slab thickness and less than 75 mm of an anchor embedment depth. It is expected that these details of the modified slab can be specified in the upgraded construction design codes.

Seismic Performance of Special Shear Wall Structural System with Effectively Reduced Reinforcement Detail (완화된 단부 배근상세를 갖는 특수전단벽 구조시스템의 내진성능평가)

  • Chun, Young-Soo;Lee, Ki-Hak;Lee, Hyo-Won;Park, Young-Eun;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.271-281
    • /
    • 2013
  • The current seismic design code prescribes that a structural wall should be designed as a special shear wall when the building height is more than 60 m and its seismic design category is classified as D. However, the use of a special shear wall has a negative effect on constructability and economic efficiency. In the present study, the seismic performance of a special shear wall and a special shear wall with relaxed reinforcement detail was evaluated through a cyclic reversal loading test. The specimens were constructed to measure the results of the experimental variable regarding the reinforcement details of the special boundary element. Next, the seismic performances of a special shear wall structural system and that of a special shear wall structural system with relaxed reinforcement detail was evaluated by methods proposed in the FEMA P695. The cyclic reversal loading test results of this study showed that the performance of the shear wall with relaxed reinforcement detail was almost similar to the performance of a special shear wall and has the performance which requested from standard. The results of the seismic evaluation showed that all special shear walls with relaxed reinforcement detail are satisfied with the design code and seismic performance.

Seismic Performance Evaluation of Nonseismic Neighborhood Living Facilities Considering Deterioration (비내진 근린생활시설의 노후도를 고려한 내진성능평가)

  • Lee, Young Cheon;Jeoung, Chae Myeoung;Lee, Eun Jin;Kim, Myung Hoon;Choi, Ki Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.55-63
    • /
    • 2013
  • In this study, seismic performance was evaluated considering the deterioration level for the low-rise and moderate buildings with non-seismic details which are most common in Korea. Evaluation results showed that the deterioration condition is relatively good even after 24 years of construction but the seismic performance did not satisfy the protection index in the first and second evaluation. In case of the third evaluation, the goal performance was satisfied based on the interstory drift ratio but reinforcement is found to be necessary. Seismic performance was evaluated after the target buildings were reinforced in the walls, bracing, and damper. Results showed the interstory drift ratio drastically reduced regardless of reinforcement methods and satisfied the level of immediate occupancy. In case of wall reinforcement, however, base shear increased more than double which requires review on the existing foundation.

Seismic performance evaluation of circular composite columns by shaking table test (진동대 실험을 통한 원형 합성 기둥의 내진 성능 평가)

  • Shim, Chang-Su;Chung, Young-Soo;Park, Ji-Ho;Park, Chang-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.71-81
    • /
    • 2007
  • For the design of composite bridge piers, detail requirements for the reinforcements is not clear to satisfy the required seismic performance. Composite bridge piers were suggested to reduce the sectional dimensions and to enhance the ductility of the columns under earthquake loadings. In this paper, five specimens of concrete encased composite columns of 400mm diameter with single core steel were fabricated to investigate the seismic performance of the composite columns. Shaking table tests and a Pseudo-Dynamic test were carried out and structural behavior of small-scaled models considering near-fault motions was evaluated. Test parameters were the pace of the transverse reinforcement, lap splice of longitudinal reinforcement and encased steel member sections. The displacement ductility from shaking table tests was lower than that from the pseudo-dynamic test. Limited ductile design and 50% lap splice of longitudinal reinforcement reduced the displacement ductility. Steel ratio showed significant effect on the ultimate strength. Lap splice and low transverse reinforcements reduced the displacement capacity. The energy dissipation capacity of composite columns did not show significant difference according to details.

Effect of the Height of the Slope on the Topology Optimization of Soilnail (비탈면의 높이가 쏘일네일 위상최적화에 미치는 영향)

  • Cho, Chungsik;Song, Youngsu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.1
    • /
    • pp.43-49
    • /
    • 2019
  • In this paper, we introduced phase optimization techniques in the Soil-Nail design to optimize the reinforcement required for each grade level. The optimal design results at the maximum slope height were further amplified to allow for phase optimization of the horizontal spacing of the Nail in accordance with the change in the height of the slope. The limit equilibrium analysis was performed by step-by-step sloping height, and the safety factor exceeded when the horizontal spacing of four days was fixed. The process of optimization was effectively carried out by densifying the required reinforcement depending on the slope elevation. Also limited to reflect the axial force of the nail into the reinforcement details.Using the method, the members' strength was reflected. When phase optimization technique is applied for each slope height by calculating the stiffening precision, it is judged that it will be more economical to optimize horizontal intervals by effectively reducing the repeated reinterpretation process that satisfies the reference safety ratio for each slope height.

Analysis on the Importance and Competitiveness of Support Services of the Food Service Franchise Headquarters AHP Technique (AHP를 이용한 외식프랜차이즈 가맹본부의 지원서비스의 중요도 및 경쟁력 분석)

  • CHOI, Chaebong;LEE, Sang-Suk
    • The Korean Journal of Franchise Management
    • /
    • v.10 no.4
    • /
    • pp.7-18
    • /
    • 2019
  • Purpose: This study identifies the relative importance of the sub - factors of initial services and continuous services using AHP (Analytic Hierarchy Process) method, and calculates the competitive index for the detailed factors. The purpose of this paper is to propose the establishment of long - term and short - term management strategy for expansion of business of food service franchise, franchisors, long - term and win - win relationship with franchisees, and rationalization of operating system. Research design, data, and methodology: The population for the survey is 92 franchisees in 46 foreign brands and 46 domestic brands in the Seoul metropolitan area (Seoul / Gyeonggi / Incheon). The survey was conducted from July 1 to August 31, 2018 through the survey agency with a telephone interview and a surveyor's direct visit. A total of 100 questionnaires were collected, but a total of 92 parts were used for analysis except 8 parts that were considered to contain false information. Using the AHP method, relative importance and competitiveness index were calculated for the details of initial services and continuous services. Results: The results shows continuous services were significantly higher for both foreign brand franchises, domestic brand franchises, and overall than initial services, This suggests that the continuous services of the affiliated franchisors has a higher relative importance than the initial services. Among the continuous services, brand reinforcement and promotion were significantly higher for both foreign brand merchants and domestic brand franchises. This can be regarded as the most important factor in brand reinforcement and promotion when selecting a food service franchisors. Conclusions: In the Standard Terms and Conditions governed by the Fair Trade Commission, the franchisors should increase the fairness by creating manuals for supporting services, especially after opening, and regularly checking whether the supporting services have been carried out like manuals since the establishment of franchisees. In addition, the Brand Strengthening and Public Relations Committee (tentative name) jointly participated by the franchisors and franchisees for the purpose of strengthening and promoting the brand, suggesting a system for transparent and efficient execution of the brand reinforcement and promotion budget and monitoring afterwards.